BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 28081818)

  • 21. Metalless electrodes for capacitively coupled contactless conductivity detection on electrophoresis microchips.
    Duarte Junior GF; Fracassi da Silva JA; Mendonça Francisco KJ; do Lago CL; Carrilho E; Coltro WK
    Electrophoresis; 2015 Aug; 36(16):1935-40. PubMed ID: 25809443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical detection method for nonelectroactive and electroactive analytes in microchip electrophoresis.
    Xu JJ; Bao N; Xia XH; Peng Y; Chen HY
    Anal Chem; 2004 Dec; 76(23):6902-7. PubMed ID: 15571339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of novel, simple, and inexpensive 3D printing-based miniaturized electrochemical platform containing embedded disposable detector for analytical applications.
    de Moraes NC; da Silva ENT; Petroni JM; Ferreira VS; Lucca BG
    Electrophoresis; 2020 Mar; 41(5-6):278-286. PubMed ID: 31529502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of micromolded carbon dual electrodes with a palladium decoupler for amperometric detection in microchip electrophoresis.
    Mecker LC; Martin RS
    Electrophoresis; 2006 Dec; 27(24):5032-42. PubMed ID: 17096314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication and evaluation of single- and dual-channel (Pi-design) microchip electrophoresis with electrochemical detection.
    Pozo-Ayuso DF; Castaño-Alvarez M; Fernández-la-Villa A; García-Granda M; Fernández-Abedul MT; Costa-García A; Rodríguez-García J
    J Chromatogr A; 2008 Feb; 1180(1-2):193-202. PubMed ID: 18177663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A facile fabrication of copper particle-decorated novel graphene flower composites for enhanced detecting of nitrite.
    Wang H; Wang C; Yang B; Zhai C; Bin D; Zhang K; Yang P; Du Y
    Analyst; 2015 Feb; 140(4):1291-7. PubMed ID: 25568897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Print-Pause-Print Fabrication of Tailored Electrochemical Microfluidic Devices.
    Hernández-Rodríguez JF; Rojas D; Escarpa A
    Anal Chem; 2023 Dec; 95(51):18679-18684. PubMed ID: 38095628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication and performance of fiber electrophoresis microchips.
    Chen Z; Zhang L; Chen G
    Electrophoresis; 2007 Jul; 28(14):2466-73. PubMed ID: 17577889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microchip capillary electrophoresis with a boron-doped diamond electrochemical detector for analysis of aromatic amines.
    Shin D; Tryk DA; Fujishima A; Muck A; Chen G; Wang J
    Electrophoresis; 2004 Sep; 25(17):3017-23. PubMed ID: 15349943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A high-performance polycarbonate electrophoresis microchip with integrated three-electrode system for end-channel amperometric detection.
    Wang Y; Chen H; He Q; Soper SA
    Electrophoresis; 2008 May; 29(9):1881-8. PubMed ID: 18393335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An end-channel amperometric detector for microchip capillary electrophoresis.
    Wu Y; Lin JM; Su R; Qu F; Cai Z
    Talanta; 2004 Oct; 64(2):338-44. PubMed ID: 18969609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microchip Electrophoresis Containing Electrodes for Integrated Electrochemical Detection.
    Bressan LP; de Jesus DP; Gunasekara DB; Lunte SM; da Silva JAF
    Methods Mol Biol; 2019; 1906():79-85. PubMed ID: 30488386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of a multichannel PDMS/glass analytical microsystem with integrated electrodes for amperometric detection.
    Moreira NH; de Almeida AL; Piazzeta MH; de Jesus DP; Deblire A; Gobbi AL; da Silva JA
    Lab Chip; 2009 Jan; 9(1):115-21. PubMed ID: 19209343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimized ink jetted paper device for electroanalytical detection of picric acid.
    Mohan JM; Amreen K; Kulkarni MB; Javed A; Dubey SK; Goel S
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112056. PubMed ID: 34425529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and testing of high-performance detection sensor for capillary electrophoresis microchips.
    Fu LM; Lee CY; Liao MH; Lin CH
    Biomed Microdevices; 2008 Feb; 10(1):73-80. PubMed ID: 17680365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PDMS/glass hybrid device with a reusable carbon electrode for on-line monitoring of catecholamines using microdialysis sampling coupled to microchip electrophoresis with electrochemical detection.
    Saylor RA; Lunte SM
    Electrophoresis; 2018 Feb; 39(3):462-469. PubMed ID: 28737835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Copper Nanoparticles for Ascorbic Acid Sensing in Water on Carbon Screen-printed Electrodes.
    Shabalina AV; Svetlichnyi VA; Ryzhinskaya KA; Lapin IN
    Anal Sci; 2017; 33(12):1415-1419. PubMed ID: 29225233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic Device Directly Fabricated on Screen-Printed Electrodes for Ultrasensitive Electrochemical Sensing of PSA.
    Chen S; Wang Z; Cui X; Jiang L; Zhi Y; Ding X; Nie Z; Zhou P; Cui D
    Nanoscale Res Lett; 2019 Feb; 14(1):71. PubMed ID: 30820698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and evaluation of a carbon-based dual-electrode detector for poly(dimethylsiloxane) electrophoresis chips.
    Gawron AJ; Martin RS; Lunte SM
    Electrophoresis; 2001 Jan; 22(2):242-8. PubMed ID: 11288891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amperometric detection in microchip electrophoresis devices: effect of electrode material and alignment on analytical performance.
    Fischer DJ; Hulvey MK; Regel AR; Lunte SM
    Electrophoresis; 2009 Oct; 30(19):3324-33. PubMed ID: 19802847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.