BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 28081818)

  • 41. A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps.
    Dornelas KL; Dossi N; Piccin E
    Anal Chim Acta; 2015 Feb; 858():82-90. PubMed ID: 25597806
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrochemiluminescence detection in microfluidic cloth-based analytical devices.
    Guan W; Liu M; Zhang C
    Biosens Bioelectron; 2016 Jan; 75():247-53. PubMed ID: 26319168
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Post separation adjustment of pH to enable the analysis of aminoglycoside antibiotics by microchip electrophoresis with amperometric detection.
    Ding Y; Bai L; Suo X; Meng X
    Electrophoresis; 2012 Nov; 33(21):3245-53. PubMed ID: 23065669
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dual-channel method for interference-free in-channel amperometric detection in microchip capillary electrophoresis.
    Chen C; Hahn JH
    Anal Chem; 2007 Sep; 79(18):7182-6. PubMed ID: 17708674
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of Recordable Compact Discs to Fabricate Electrodes for Microchip-based Analysis Systems.
    Kirkpatrick DC; Antwi C; Martin RS
    Anal Methods; 2010 Jul; 2(7):811-816. PubMed ID: 21031142
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of paper-based analytical devices using a PLA 3D-printed stencil for electrochemical determination of chloroquine and escitalopram.
    Silva MKL; Sousa GS; Simoes RP; Cesarino I
    J Solid State Electrochem; 2022; 26(2):581-586. PubMed ID: 34751209
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiple-point electrochemical detection for a dual-channel hybrid PDMS-glass microchip electrophoresis device.
    Castaño-Alvarez M; Fernández-la-Villa A; Pozo-Ayuso DF; Fernández-Abedul MT; Costa-García A
    Electrophoresis; 2009 Oct; 30(19):3372-80. PubMed ID: 19802849
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simple and rapid fabrication of disposable carbon-based electrochemical cells using an electronic craft cutter for sensor and biosensor applications.
    Afonso AS; Uliana CV; Martucci DH; Faria RC
    Talanta; 2016; 146():381-7. PubMed ID: 26695279
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication of a magnet-assisted alignment device for the amperometric detection of capillary electrophoresis using a carbon nanotube/polypropylene composite electrode.
    Xu J; Zhang L; Chen G
    Electrophoresis; 2013 Jul; 34(14):2017-24. PubMed ID: 23161656
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A microband lactate biosensor fabricated using a water-based screen-printed carbon ink.
    Rawson FJ; Purcell WM; Xu J; Pemberton RM; Fielden PR; Biddle N; Hart JP
    Talanta; 2009 Jan; 77(3):1149-54. PubMed ID: 19064104
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrochemical biotoxicity detection on a microfluidic paper-based analytical device via cellular respiratory inhibition.
    Zhang J; Yang Z; Liu Q; Liang H
    Talanta; 2019 Sep; 202():384-391. PubMed ID: 31171199
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Continuous monitoring of adenosine and its metabolites using microdialysis coupled to microchip electrophoresis with amperometric detection.
    Gunawardhana SM; Lunte SM
    Anal Methods; 2018 Aug; 10(30):3737-3744. PubMed ID: 31579297
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitrite Determination in Environmental Water Samples Using Microchip Electrophoresis Coupled with Amperometric Detection.
    Lucas SB; Duarte LM; Rezende KCA; Coltro WKT
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296090
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel amperometric sensor for ascorbic acid based on poly(Nile blue A) and functionalised multi-walled carbon nanotube modified electrodes.
    Kul D; Ghica ME; Pauliukaite R; Brett CM
    Talanta; 2013 Jul; 111():76-84. PubMed ID: 23622528
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simple method for the separation and detection of native amino acids and the identification of electroactive and non-electroactive analytes.
    Xu JJ; Peng Y; Bao N; Xia XH; Chen HY
    J Chromatogr A; 2005 Nov; 1095(1-2):193-6. PubMed ID: 16239006
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integration of multiple components in polystyrene-based microfluidic devices part I: fabrication and characterization.
    Johnson AS; Anderson KB; Halpin ST; Kirkpatrick DC; Spence DM; Martin RS
    Analyst; 2013 Jan; 138(1):129-36. PubMed ID: 23120747
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new method for fabrication of an integrated indium tin oxide electrode on electrophoresis microchips with amperometric detection and its application for determination of synephrine and hesperidin in pericarpium citri reticulatae.
    Wang W; Xu X; Bin Q; Ling J; Chen G
    Electrophoresis; 2006 Nov; 27(21):4174-81. PubMed ID: 17001742
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrochemical detection of phenolic compounds using cylindrical carbon-ink electrodes and microchip capillary electrophoresis.
    Ding Y; Ayon A; García CD
    Anal Chim Acta; 2007 Feb; 584(2):244-51. PubMed ID: 17386611
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway.
    Saylor RA; Reid EA; Lunte SM
    Electrophoresis; 2015 Aug; 36(16):1912-9. PubMed ID: 25958983
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of dual electrode configurations for microchip electrophoresis used for voltammetric characterization of electroactive species.
    Gunasekara DB; Wijesinghe MB; Pichetsurnthorn P; Lunte SM
    Analyst; 2020 Feb; 145(3):865-872. PubMed ID: 31820743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.