BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28081900)

  • 21. Continuous microfluidic DNA and protein trapping and concentration by balancing transverse electrokinetic forces.
    Morales MC; Lin H; Zahn JD
    Lab Chip; 2012 Jan; 12(1):99-108. PubMed ID: 22045330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carrier ampholyte-free free-flow isoelectric focusing for separation of protein.
    Wang S; Zhang L; Sun H; Chu Z; Chen H; Zhao Y; Zhang W
    Electrophoresis; 2019 Sep; 40(18-19):2610-2617. PubMed ID: 30977523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Taylor dispersion in equilibrium gradient focusing at steady state.
    Ivory CF
    Electrophoresis; 2015 Mar; 36(5):662-7. PubMed ID: 25521436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D; Tenny J; Webbd BW; Lee ML
    Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduction in sample injection bias using pressure gradients generated on chip.
    Liu Y; Xia L; Dutta D
    Electrophoresis; 2021 Apr; 42(7-8):983-990. PubMed ID: 33569844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microchip-Based Electrophoretic Separations with a Pressure-Driven Backflow.
    Xia L; Dutta D
    Methods Mol Biol; 2019; 1906():239-249. PubMed ID: 30488397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isoelectric focusing using non-amphoteric buffers in free solution: III. Separation of amino acids.
    Wenger P; Javet P
    J Biochem Biophys Methods; 1986 Nov; 13(4-5):289-303. PubMed ID: 3805579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reciprocating free-flow isoelectric focusing with online array ultraviolet detector for process monitoring of protein separation.
    Huang L; Zhang Q; Tian Y; Liu X; Liu W; Xiao H; Wang Y; Cao C
    J Chromatogr A; 2022 Jan; 1663():462747. PubMed ID: 34973480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sampling strategies for capillary isoelectric focusing with electroosmotic zone mobilization assessed by high-resolution dynamic computer simulation.
    Takácsi-Nagy A; Kilár F; Páger C; Mosher RA; Thormann W
    Electrophoresis; 2012 Mar; 33(6):970-80. PubMed ID: 22655305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimizing band width and resolution in micro-free flow electrophoresis.
    Fonslow BR; Bowser MT
    Anal Chem; 2006 Dec; 78(24):8236-44. PubMed ID: 17165812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple-open-tubular column enabling transverse diffusion. Part 3: Simulation of solute dispersion along a real three dimensional-printed column with quadratic channels.
    Gritti F; Hlushkou D; Tallarek U
    J Chromatogr A; 2023 Mar; 1693():463860. PubMed ID: 36822037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating peak dispersion in free-flow counterflow gradient focusing due to electroosmotic flow.
    Courtney M; Glawdel T; Ren CL
    Electrophoresis; 2023 Apr; 44(7-8):646-655. PubMed ID: 36502493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diffusion as major source of band broadening in field-amplified sample stacking under negligible electroosmotic flow velocity conditions.
    Huhn C; Pyell U
    J Chromatogr A; 2010 Jun; 1217(26):4476-86. PubMed ID: 20452606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of full-column imaging capillary isoelectric focusing for the rapid determination of the operating conditions in the preparative-scale continuous free-flow isoelectric focusing separation of enantiomers.
    Spanik I; Lim P; Vigh G
    J Chromatogr A; 2002 Jun; 960(1-2):241-6. PubMed ID: 12150562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of the pI of human rhinovirus serotype 2 by capillary isoelectric focusing.
    Schnabel U; Groiss F; Blaas D; Kenndler E
    Anal Chem; 1996 Dec; 68(23):4300-3. PubMed ID: 8946796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new approach to isoelectric focusing and fractionation of proteins in a pH gradient.
    Luner SJ; Kolin A
    Proc Natl Acad Sci U S A; 1970 Jul; 66(3):898-903. PubMed ID: 5269251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isoelectric focusing in a silica nanofluidic channel: effects of electromigration and electroosmosis.
    Hsu WL; Inglis DW; Startsev MA; Goldys EM; Davidson MR; Harvie DJ
    Anal Chem; 2014 Sep; 86(17):8711-8. PubMed ID: 25098739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic preparative free-flow isoelectric focusing: system optimization for protein complex separation.
    Wen J; Wilker EW; Yaffe MB; Jensen KF
    Anal Chem; 2010 Feb; 82(4):1253-60. PubMed ID: 20092256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scaling behavior in on-chip field-amplified sample stacking.
    Dubey K; Gupta A; Bahga SS
    Electrophoresis; 2019 Mar; 40(5):730-739. PubMed ID: 30628102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isoelectric focusing on microfluidic paper-based chips.
    Yu S; Yan C; Hu X; He B; Jiang Y; He Q
    Anal Bioanal Chem; 2019 Aug; 411(21):5415-5422. PubMed ID: 31317237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.