BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28082200)

  • 1. mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival.
    Feng Y; Wu L
    Biochem Biophys Res Commun; 2017 Feb; 483(2):897-903. PubMed ID: 28082200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upregulation of 6-phosphofructo-2-kinase (PFKFB3) by hyperactivated mammalian target of rapamycin complex 1 is critical for tumor growth in tuberous sclerosis complex.
    Wang Y; Tang S; Wu Y; Wan X; Zhou M; Li H; Zha X
    IUBMB Life; 2020 May; 72(5):965-977. PubMed ID: 31958214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheb1 promotes tumor progression through mTORC1 in MLL-AF9-initiated murine acute myeloid leukemia.
    Gao Y; Gao J; Li M; Zheng Y; Wang Y; Zhang H; Wang W; Chu Y; Wang X; Xu M; Cheng T; Ju Z; Yuan W
    J Hematol Oncol; 2016 Apr; 9():36. PubMed ID: 27071307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NFκB up-regulation of glucose transporter 3 is essential for hyperactive mammalian target of rapamycin-induced aerobic glycolysis and tumor growth.
    Zha X; Hu Z; Ji S; Jin F; Jiang K; Li C; Zhao P; Tu Z; Chen X; Di L; Zhou H; Zhang H
    Cancer Lett; 2015 Apr; 359(1):97-106. PubMed ID: 25578782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive Oxygen Species Drive Proliferation in Acute Myeloid Leukemia via the Glycolytic Regulator PFKFB3.
    Robinson AJ; Hopkins GL; Rastogi N; Hodges M; Doyle M; Davies S; Hole PS; Omidvar N; Darley RL; Tonks A
    Cancer Res; 2020 Mar; 80(5):937-949. PubMed ID: 31862780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concurrent inhibition of PI3K and mTORC1/mTORC2 overcomes resistance to rapamycin induced apoptosis by down-regulation of Mcl-1 in mantle cell lymphoma.
    Müller A; Zang C; Chumduri C; Dörken B; Daniel PT; Scholz CW
    Int J Cancer; 2013 Oct; 133(8):1813-24. PubMed ID: 23580240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRAF7 inhibits glycolysis to potentiate growth inhibition and apoptosis of myeloid leukemia cells via regulating the KLF2-PFKFB3 axis.
    Zou L; Fang Y; He W
    Mol Cell Probes; 2023 Jun; 69():101911. PubMed ID: 37003349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mTORC1 alters the expression of glycolytic genes by regulating KPNA2 abundances.
    Chen X; Zhu Y; Wang Z; Zhu H; Pan Q; Su S; Dong Y; Li L; Zhang H; Wu L; Lou X; Liu S
    J Proteomics; 2016 Mar; 136():13-24. PubMed ID: 26844761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA-451 regulates AMPK/mTORC1 signaling and fascin1 expression in HT-29 colorectal cancer.
    Chen MB; Wei MX; Han JY; Wu XY; Li C; Wang J; Shen W; Lu PH
    Cell Signal; 2014 Jan; 26(1):102-9. PubMed ID: 23899558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antileukaemic effect of PI3K-mTOR inhibitors in acute myeloid leukaemia-gene expression profiles reveal CDC25B expression as determinate of pharmacological effect.
    Reikvam H; Tamburini J; Skrede S; Holdhus R; Poulain L; Ersvaer E; Hatfield KJ; Bruserud Ø
    Br J Haematol; 2014 Jan; 164(2):200-11. PubMed ID: 24383842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional Disruption of Raptor Reveals an Essential Role for mTORC1 in B Cell Development, Survival, and Metabolism.
    Iwata TN; Ramírez JA; Tsang M; Park H; Margineantu DH; Hockenbery DM; Iritani BM
    J Immunol; 2016 Sep; 197(6):2250-60. PubMed ID: 27521345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of gene expression array in TSC2-deficient AML cells reveals IRF7 as a pivotal factor in the Rheb/mTOR pathway.
    Makovski V; Jacob-Hirsch J; Gefen-Dor C; Shai B; Ehrlich M; Rechavi G; Kloog Y
    Cell Death Dis; 2014 Dec; 5(12):e1557. PubMed ID: 25476905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia-induced endothelial proliferation requires both mTORC1 and mTORC2.
    Li W; Petrimpol M; Molle KD; Hall MN; Battegay EJ; Humar R
    Circ Res; 2007 Jan; 100(1):79-87. PubMed ID: 17110594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of the proliferation of hypoxia-Induced retinal pigment epithelial cell by rapamycin through the /mTOR/HIF-1α/VEGF/ signaling.
    Liu NN; Zhao N; Cai N
    IUBMB Life; 2015 Jun; 67(6):446-52. PubMed ID: 25988388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of mTORC1-S6K1 signaling pathway in regulation of hematopoietic stem cell and acute myeloid leukemia.
    Ghosh J; Kapur R
    Exp Hematol; 2017 Jun; 50():13-21. PubMed ID: 28342808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High PD‑L1 expression drives glycolysis via an Akt/mTOR/HIF‑1α axis in acute myeloid leukemia.
    Ma P; Xing M; Han L; Gan S; Ma J; Wu F; Huang Y; Chen Y; Tian W; An C; Sun H; Sun L
    Oncol Rep; 2020 Mar; 43(3):999-1009. PubMed ID: 32020232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Roles of mTORC1 in acute myeloid leukemia].
    Hoshii T; Hirao A
    Rinsho Ketsueki; 2015 Apr; 56(4):359-65. PubMed ID: 25971265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of mammalian target of rapamycin signaling potentiates the effects of all-trans retinoic acid to induce growth arrest and differentiation of human acute myelogenous leukemia cells.
    Nishioka C; Ikezoe T; Yang J; Gery S; Koeffler HP; Yokoyama A
    Int J Cancer; 2009 Oct; 125(7):1710-20. PubMed ID: 19507250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia.
    Tamburini J; Green AS; Bardet V; Chapuis N; Park S; Willems L; Uzunov M; Ifrah N; Dreyfus F; Lacombe C; Mayeux P; Bouscary D
    Blood; 2009 Aug; 114(8):1618-27. PubMed ID: 19458359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rictor has a pivotal role in maintaining quiescence as well as stemness of leukemia stem cells in MLL-driven leukemia.
    Fang Y; Yang Y; Hua C; Xu S; Zhou M; Guo H; Wang N; Zhao X; Huang L; Yu F; Cheng H; Wang ML; Meng L; Cheng T; Yuan W; Ma D; Zhou J
    Leukemia; 2017 Feb; 31(2):414-422. PubMed ID: 27499138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.