BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28082599)

  • 1. Hsp90 and Physiological Stress Are Linked to Autonomous Transposon Mobility and Heritable Genetic Change in Nematodes.
    Ryan CP; Brownlie JC; Whyard S
    Genome Biol Evol; 2016 Dec; 8(12):3794-3805. PubMed ID: 28082599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silencing of Transposable Elements by piRNAs in Drosophila: An Evolutionary Perspective.
    Luo S; Lu J
    Genomics Proteomics Bioinformatics; 2017 Jun; 15(3):164-176. PubMed ID: 28602845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons.
    Specchia V; Piacentini L; Tritto P; Fanti L; D'Alessandro R; Palumbo G; Pimpinelli S; Bozzetti MP
    Nature; 2010 Feb; 463(7281):662-5. PubMed ID: 20062045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term experimental evolution reveals purifying selection on piRNA-mediated control of transposable element expression.
    Bergthorsson U; Sheeba CJ; Konrad A; Belicard T; Beltran T; Katju V; Sarkies P
    BMC Biol; 2020 Nov; 18(1):162. PubMed ID: 33158445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of piRNAs in transposon and pseudogene regulation of germline mRNAs and lncRNAs.
    Wang C; Lin H
    Genome Biol; 2021 Jan; 22(1):27. PubMed ID: 33419460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transposable Element-Mediated Balancing Selection at Hsp90 Underlies Embryo Developmental Variation.
    Chen B; Zhang B; Xu L; Li Q; Jiang F; Yang P; Xu Y; Kang L
    Mol Biol Evol; 2017 May; 34(5):1127-1139. PubMed ID: 28138075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Euchromatic transposon insertions trigger production of novel Pi- and endo-siRNAs at the target sites in the drosophila germline.
    Shpiz S; Ryazansky S; Olovnikov I; Abramov Y; Kalmykova A
    PLoS Genet; 2014 Feb; 10(2):e1004138. PubMed ID: 24516406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of piRNA-mediated silencing of active TEs in Drosophila melanogaster suggests limits on the evolution of host genome defense.
    Kelleher ES; Barbash DA
    Mol Biol Evol; 2013 Aug; 30(8):1816-29. PubMed ID: 23625890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Hsp70 chaperone is a major player in stress-induced transposable element activation.
    Cappucci U; Noro F; Casale AM; Fanti L; Berloco M; Alagia AA; Grassi L; Le Pera L; Piacentini L; Pimpinelli S
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):17943-17950. PubMed ID: 31399546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline.
    Das PP; Bagijn MP; Goldstein LD; Woolford JR; Lehrbach NJ; Sapetschnig A; Buhecha HR; Gilchrist MJ; Howe KL; Stark R; Matthews N; Berezikov E; Ketting RF; Tavaré S; Miska EA
    Mol Cell; 2008 Jul; 31(1):79-90. PubMed ID: 18571451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity.
    Ernst C; Odom DT; Kutter C
    Nat Commun; 2017 Nov; 8(1):1411. PubMed ID: 29127279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transposable Element Targeting by piRNAs in Laurasiatherians with Distinct Transposable Element Histories.
    Vandewege MW; Platt RN; Ray DA; Hoffmann FG
    Genome Biol Evol; 2016 May; 8(5):1327-37. PubMed ID: 27060702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homeland security in the C. elegans germ line: insights into the biogenesis and function of piRNAs.
    Kasper DM; Gardner KE; Reinke V
    Epigenetics; 2014 Jan; 9(1):62-74. PubMed ID: 24149573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural Variation in the Distribution and Abundance of Transposable Elements Across the Caenorhabditis elegans Species.
    Laricchia KM; Zdraljevic S; Cook DE; Andersen EC
    Mol Biol Evol; 2017 Sep; 34(9):2187-2202. PubMed ID: 28486636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-layer transposon repression in heads of
    van den Beek M; da Silva B; Pouch J; Ali Chaouche MEA; Carré C; Antoniewski C
    RNA; 2018 Dec; 24(12):1749-1760. PubMed ID: 30217866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mut-16 and other mutator class genes modulate 22G and 26G siRNA pathways in Caenorhabditis elegans.
    Zhang C; Montgomery TA; Gabel HW; Fischer SE; Phillips CM; Fahlgren N; Sullivan CM; Carrington JC; Ruvkun G
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1201-8. PubMed ID: 21245313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-chaperone Hsp70/Hsp90-organizing protein (Hop) is required for transposon silencing and Piwi-interacting RNA (piRNA) biogenesis.
    Karam JA; Parikh RY; Nayak D; Rosenkranz D; Gangaraju VK
    J Biol Chem; 2017 Apr; 292(15):6039-6046. PubMed ID: 28193840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downregulation of transposable elements extends lifespan in Caenorhabditis elegans.
    Sturm Á; Saskői É; Hotzi B; Tarnóci A; Barna J; Bodnár F; Sharma H; Kovács T; Ari E; Weinhardt N; Kerepesi C; Perczel A; Ivics Z; Vellai T
    Nat Commun; 2023 Aug; 14(1):5278. PubMed ID: 37644049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maternal piRNAs Are Essential for Germline Development following De Novo Establishment of Endo-siRNAs in Caenorhabditis elegans.
    de Albuquerque BF; Placentino M; Ketting RF
    Dev Cell; 2015 Aug; 34(4):448-56. PubMed ID: 26279485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transposons, environmental changes, and heritable induced phenotypic variability.
    Piacentini L; Fanti L; Specchia V; Bozzetti MP; Berloco M; Palumbo G; Pimpinelli S
    Chromosoma; 2014 Aug; 123(4):345-54. PubMed ID: 24752783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.