BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 28082608)

  • 1. The Conservation of the Germline Multipotency Program, from Sponges to Vertebrates: A Stepping Stone to Understanding the Somatic and Germline Origins.
    Fierro-Constaín L; Schenkelaars Q; Gazave E; Haguenauer A; Rocher C; Ereskovsky A; Borchiellini C; Renard E
    Genome Biol Evol; 2017 Mar; 9(3):474-488. PubMed ID: 28082608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retracing the path of planar cell polarity.
    Schenkelaars Q; Fierro-Constain L; Renard E; Borchiellini C
    BMC Evol Biol; 2016 Apr; 16():69. PubMed ID: 27039172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals.
    Simion P; Philippe H; Baurain D; Jager M; Richter DJ; Di Franco A; Roure B; Satoh N; Quéinnec É; Ereskovsky A; Lapébie P; Corre E; Delsuc F; King N; Wörheide G; Manuel M
    Curr Biol; 2017 Apr; 27(7):958-967. PubMed ID: 28318975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges.
    Riesgo A; Farrar N; Windsor PJ; Giribet G; Leys SP
    Mol Biol Evol; 2014 May; 31(5):1102-20. PubMed ID: 24497032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Homoscleromorph sponge Oscarella lobularis, a promising sponge model in evolutionary and developmental biology: model sponge Oscarella lobularis.
    Ereskovsky AV; Borchiellini C; Gazave E; Ivanisevic J; Lapébie P; Perez T; Renard E; Vacelet J
    Bioessays; 2009 Jan; 31(1):89-97. PubMed ID: 19154007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Six major steps in animal evolution: are we derived sponge larvae?
    Nielsen C
    Evol Dev; 2008; 10(2):241-57. PubMed ID: 18315817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Hybridization Techniques in the Homoscleromorph Sponge Oscarella lobularis.
    Fierro-Constaín L; Rocher C; Marschal F; Schenkelaars Q; Séjourné N; Borchiellini C; Renard E
    Methods Mol Biol; 2021; 2219():181-194. PubMed ID: 33074541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary origins of germline segregation in Metazoa: evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa).
    Barfield S; Aglyamova GV; Matz MV
    Proc Biol Sci; 2016 Jan; 283(1822):. PubMed ID: 26763699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colonial origin for Emetazoa: major morphological transitions and the origin of bilaterian complexity.
    Dewel RA
    J Morphol; 2000 Jan; 243(1):35-74. PubMed ID: 10629096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The GPCR repertoire in the demosponge Amphimedon queenslandica: insights into the GPCR system at the early divergence of animals.
    Krishnan A; Dnyansagar R; Almén MS; Williams MJ; Fredriksson R; Manoj N; Schiöth HB
    BMC Evol Biol; 2014 Dec; 14():270. PubMed ID: 25528161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved Genes in Highly Regenerative Metazoans Are Associated with Planarian Regeneration.
    Chereddy SCRR; Makino T
    Genome Biol Evol; 2024 May; 16(5):. PubMed ID: 38652806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NK homeobox genes with choanocyte-specific expression in homoscleromorph sponges.
    Gazave E; Lapébie P; Renard E; Bézac C; Boury-Esnault N; Vacelet J; Pérez T; Manuel M; Borchiellini C
    Dev Genes Evol; 2008 Sep; 218(9):479-89. PubMed ID: 18704494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracting phylogenetic signal and accounting for bias in whole-genome data sets supports the Ctenophora as sister to remaining Metazoa.
    Borowiec ML; Lee EK; Chiu JC; Plachetzki DC
    BMC Genomics; 2015 Nov; 16():987. PubMed ID: 26596625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial genome of the homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals.
    Wang X; Lavrov DV
    Mol Biol Evol; 2007 Feb; 24(2):363-73. PubMed ID: 17090697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The early evolution of Hox genes: a battle of belief?
    Schierwater B; Kamm K
    Adv Exp Med Biol; 2010; 689():81-90. PubMed ID: 20795323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic-signal dissection of nuclear housekeeping genes supports the paraphyly of sponges and the monophyly of Eumetazoa.
    Sperling EA; Peterson KJ; Pisani D
    Mol Biol Evol; 2009 Oct; 26(10):2261-74. PubMed ID: 19597161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Radiata and the evolutionary origins of the bilaterian body plan.
    Martindale MQ; Finnerty JR; Henry JQ
    Mol Phylogenet Evol; 2002 Sep; 24(3):358-65. PubMed ID: 12220977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Germline-related molecular phenotype in Metazoa: conservation and innovation highlighted by comparative transcriptomics.
    Piccinini G; Milani L
    Evodevo; 2023 Jan; 14(1):2. PubMed ID: 36717890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meeting Report on "At the Roots of Bilaterian Complexity: Insights from Early Emerging Metazoans," Tutzing (Germany) September 16-19, 2019.
    Funayama N; Frank U
    Bioessays; 2020 Feb; 42(2):e1900236. PubMed ID: 31869434
    [No Abstract]   [Full Text] [Related]  

  • 20. Characterization of mitochondrial proteomes of nonbilaterian animals.
    Muthye V; Lavrov DV
    IUBMB Life; 2018 Dec; 70(12):1289-1301. PubMed ID: 30419142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.