These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28082937)

  • 1. It Pays to Go Off-Track: Practicing with Error-Augmenting Haptic Feedback Facilitates Learning of a Curve-Tracing Task.
    Williams CK; Tremblay L; Carnahan H
    Front Psychol; 2016; 7():2010. PubMed ID: 28082937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern.
    Marchal-Crespo L; Tsangaridis P; Obwegeser D; Maggioni S; Riener R
    Front Neurosci; 2019; 13():61. PubMed ID: 30837824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Control of Haptic Assistance for Motor Learning: Influences of Frequency and Opinion of Utility.
    Williams CK; Tseung V; Carnahan H
    Front Psychol; 2017; 8():2082. PubMed ID: 29255438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of error-amplification and haptic-guidance training techniques for learning of a timing-based motor task by healthy individuals.
    Milot MH; Marchal-Crespo L; Green CS; Cramer SC; Reinkensmeyer DJ
    Exp Brain Res; 2010 Mar; 201(2):119-31. PubMed ID: 19787345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning to perform a new movement with robotic assistance: comparison of haptic guidance and visual demonstration.
    Liu J; Cramer SC; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2006 Aug; 3():20. PubMed ID: 16945148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of haptic guidance, aging, and initial skill level on motor learning of a steering task.
    Marchal-Crespo L; McHughen S; Cramer SC; Reinkensmeyer DJ
    Exp Brain Res; 2010 Mar; 201(2):209-20. PubMed ID: 19820920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.
    Cuppone AV; Squeri V; Semprini M; Masia L; Konczak J
    PLoS One; 2016; 11(10):e0164511. PubMed ID: 27727321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Combined Versus Singular Verbal or Haptic Feedback on Acquisition, Retention, Difficulty, and Competence Perceptions in Motor Learning.
    Frikha M; Chaâri N; Elghoul Y; Mohamed-Ali HH; Zinkovsky AV
    Percept Mot Skills; 2019 Aug; 126(4):713-732. PubMed ID: 31033405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terminal feedback outperforms concurrent visual, auditory, and haptic feedback in learning a complex rowing-type task.
    Sigrist R; Rauter G; Riener R; Wolf P
    J Mot Behav; 2013; 45(6):455-72. PubMed ID: 24006910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of haptic guidance in learning a novel visuomotor task.
    van Asseldonk EH; Wessels M; Stienen AH; van der Helm FC; van der Kooij H
    J Physiol Paris; 2009; 103(3-5):276-85. PubMed ID: 19665551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effectiveness of robotic training depends on motor task characteristics.
    Marchal-Crespo L; Rappo N; Riener R
    Exp Brain Res; 2017 Dec; 235(12):3799-3816. PubMed ID: 28983676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural circuits activated by error amplification and haptic guidance training techniques during performance of a timing-based motor task by healthy individuals.
    Milot MH; Marchal-Crespo L; Beaulieu LD; Reinkensmeyer DJ; Cramer SC
    Exp Brain Res; 2018 Nov; 236(11):3085-3099. PubMed ID: 30132040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodic Kinesthetic Guidance Cannot Expedite Learning Surgical Skills.
    Lu F; Wang B; Sanchez P; Kathrada AI; Tavakoli M; Zheng B
    Surg Innov; 2021 Feb; 28(1):103-109. PubMed ID: 33085581
    [No Abstract]   [Full Text] [Related]  

  • 15. Rowing Simulator Modulates Water Density to Foster Motor Learning.
    Basalp E; Marchal-Crespo L; Rauter G; Riener R; Wolf P
    Front Robot AI; 2019; 6():74. PubMed ID: 33501089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haptic guidance can enhance motor learning of a steering task.
    Marchal Crespo L; Reinkensmeyer DJ
    J Mot Behav; 2008 Nov; 40(6):545-56. PubMed ID: 18980907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor learning with fading and growing haptic guidance.
    Heuer H; Lüttgen J
    Exp Brain Res; 2014 Jul; 232(7):2229-42. PubMed ID: 24736860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task.
    Marchal-Crespo L; Michels L; Jaeger L; López-Olóriz J; Riener R
    Front Neurosci; 2017; 11():526. PubMed ID: 29021739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promoting Motor Variability During Robotic Assistance Enhances Motor Learning of Dynamic Tasks.
    Özen Ö; Buetler KA; Marchal-Crespo L
    Front Neurosci; 2020; 14():600059. PubMed ID: 33603642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback and motor skill acquisition using a haptic dental simulator.
    Al-Saud LM; Mushtaq F; Allsop MJ; Culmer PC; Mirghani I; Yates E; Keeling A; Mon-Williams MA; Manogue M
    Eur J Dent Educ; 2017 Nov; 21(4):240-247. PubMed ID: 27324833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.