These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28082997)

  • 1. Detection of Invertebrate Suppressive Soils, and Identification of a Possible Biological Control Agent for
    Bell NL; Adam KH; Jones RJ; Johnson RD; Mtandavari YF; Burch G; Cave V; Cameron C; Maclean P; Popay AJ; Fleetwood D
    Front Plant Sci; 2016; 7():1946. PubMed ID: 28082997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host-Parasite Relationships of Meloidogyne trifoliophila Isolates from New Zealand.
    Mercer CF; Starr JL; Miller KJ
    J Nematol; 1997 Mar; 29(1):55-64. PubMed ID: 19274134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors associated with the suppressiveness of sugarcane soils to plant-parasitic nematodes.
    Stirling GR; Rames E; Stirling AM; Hamill S
    J Nematol; 2011 Sep; 43(3-4):135-48. PubMed ID: 23431051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of biosolid amendment on populations of Meloidogyne hapla and soils with different textures and pHs.
    Mennan S; Melakeberhan H
    Bioresour Technol; 2010 Sep; 101(18):7169-75. PubMed ID: 20427181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serratia proteamaculans Strain AGR96X Encodes an Antifeeding Prophage (Tailocin) with Activity against Grass Grub (Costelytra giveni) and Manuka Beetle (Pyronota Species) Larvae.
    Hurst MRH; Beattie A; Jones SA; Laugraud A; van Koten C; Harper L
    Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29549100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host Suitability of Twelve Leguminosae Species to Populations of Meloidogyne hapla and M. chitwoodi.
    Griffin GD; Rumbaugh MD
    J Nematol; 1996 Sep; 28(3):400-6. PubMed ID: 19277158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting Disease-Suppressive Rhizosphere Microbiomes by Functional Amplicon Sequencing and 10× Metagenomics.
    Tracanna V; Ossowicki A; Petrus MLC; Overduin S; Terlouw BR; Lund G; Robinson SL; Warris S; Schijlen EGWM; van Wezel GP; Raaijmakers JM; Garbeva P; Medema MH
    mSystems; 2021 Jun; 6(3):e0111620. PubMed ID: 34100635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current Insights into the Role of Rhizosphere Bacteria in Disease Suppressive Soils.
    Gómez Expósito R; de Bruijn I; Postma J; Raaijmakers JM
    Front Microbiol; 2017; 8():2529. PubMed ID: 29326674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing microbial communities associated with northern root-knot nematode (
    Lartey I; Benucci GMN; Marsh TL; Bonito GM; Melakeberhan H
    Front Microbiol; 2023; 14():1267008. PubMed ID: 38029134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Soil Suppressiveness to Root-Knot Nematodes in Organic Horticulture in Plastic Greenhouse.
    Giné A; Carrasquilla M; Martínez-Alonso M; Gaju N; Sorribas FJ
    Front Plant Sci; 2016; 7():164. PubMed ID: 26925080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Diverse Toxin Complex Clusters and an eCIS Variant in Serratia proteamaculans Pathovars of the New Zealand Grass Grub (
    Hurst MRH; Beattie A; Laugraud A; Townsend R; Sitter L; van Koten C; Harper L
    Microbiol Spectr; 2021 Oct; 9(2):e0112321. PubMed ID: 34668742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and description of soils with specific nematode suppressiveness.
    Westphal A
    J Nematol; 2005 Mar; 37(1):121-32. PubMed ID: 19262851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolomics approaches for the discrimination of disease suppressive soils for Rhizoctonia solani AG8 in cereal crops using
    Hayden HL; Rochfort SJ; Ezernieks V; Savin KW; Mele PM
    Sci Total Environ; 2019 Feb; 651(Pt 1):1627-1638. PubMed ID: 30360288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial community assemblages in the rhizosphere soil, root endosphere and cyst of soybean cyst nematode-suppressive soil challenged with nematodes.
    Hussain M; Hamid MI; Tian J; Hu J; Zhang X; Chen J; Xiang M; Liu X
    FEMS Microbiol Ecol; 2018 Oct; 94(10):. PubMed ID: 30052910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhizosphere ecology and phytoprotection in soils naturally suppressive to Thielaviopsis black root rot of tobacco.
    Almario J; Muller D; Défago G; Moënne-Loccoz Y
    Environ Microbiol; 2014 Jul; 16(7):1949-60. PubMed ID: 24650207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils.
    Barrutia O; Garbisu C; Epelde L; Sampedro MC; Goicolea MA; Becerril JM
    Sci Total Environ; 2011 Sep; 409(19):4087-93. PubMed ID: 21741073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant microbiome analysis after Metarhizium amendment reveals increases in abundance of plant growth-promoting organisms and maintenance of disease-suppressive soil.
    Barelli L; Waller AS; Behie SW; Bidochka MJ
    PLoS One; 2020; 15(4):e0231150. PubMed ID: 32275687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nicotinamide adenine dinucleotide induced resistance against root-knot nematode
    Abdelsamad N; Regmi H; Desaeger J; DiGennaro P
    J Nematol; 2019; 51():1-10. PubMed ID: 31088034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Species-Specific PCR for Detection and Quantification of
    Gorny AM; Wang X; Hay FS; Pethybridge SJ
    Plant Dis; 2019 Aug; 103(8):1902-1909. PubMed ID: 31242131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of Ditylenchus dipsaci and Meloidogyne hapla on Resistant and Susceptible Plant Species.
    Griffin GD
    J Nematol; 1987 Oct; 19(4):441-6. PubMed ID: 19290168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.