These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 28083089)
1. Dust evolution, a global view: II. Top-down branching, nanoparticle fragmentation and the mystery of the diffuse interstellar band carriers. Jones AP R Soc Open Sci; 2016 Dec; 3(12):160223. PubMed ID: 28083089 [TBL] [Abstract][Full Text] [Related]
2. Dust evolution, a global view I. Nanoparticles, nascence, nitrogen and natural selection … joining the dots. Jones AP R Soc Open Sci; 2016 Dec; 3(12):160221. PubMed ID: 28083088 [TBL] [Abstract][Full Text] [Related]
3. Assessment of the polycyclic aromatic hydrocarbon-diffuse interstellar band proposal. Salama F; Bakes EL; Allamandola LJ; Tielens AG Astrophys J; 1996 Feb; 458(2 Pt 1):621-36. PubMed ID: 11538558 [TBL] [Abstract][Full Text] [Related]
4. The diffuse interstellar bands: a tracer for organics in the diffuse interstellar medium? Salama F Orig Life Evol Biosph; 1998 Oct; 28(4-6):349-64. PubMed ID: 9742721 [TBL] [Abstract][Full Text] [Related]
5. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry. Jones AP R Soc Open Sci; 2016 Dec; 3(12):160224. PubMed ID: 28083090 [TBL] [Abstract][Full Text] [Related]
6. The ESO Diffuse Interstellar Bands Large Exploration Survey: EDIBLES I. Project description, survey sample and quality assessment. Cox NLJ; Cami J; Farhang A; Smoker J; Monreal-Ibero A; Lallement R; Sarre PJ; Marshall CCM; Smith KT; Evans CJ; Royer P; Linnartz H; Cordiner MA; Joblin C; van Loon JT; Foing BH; Bhatt NH; Bron E; Elyajouri M; de Koter A; Ehrenfreund P; Javadi A; Kaper L; Khosroshadi HG; Laverick M; Le Petit F; Mulas G; Roueff E; Salama F; Spaans M Astron Astrophys; 2017 Oct; 606():. PubMed ID: 29151608 [TBL] [Abstract][Full Text] [Related]
7. Interstellar medium. Pseudo-three-dimensional maps of the diffuse interstellar band at 862 nm. Kos J; Zwitter T; Wyse R; Bienaymé O; Binney J; Bland-Hawthorn J; Freeman K; Gibson BK; Gilmore G; Grebel EK; Helmi A; Kordopatis G; Munari U; Navarro J; Parker Q; Reid WA; Seabroke G; Sharma S; Siebert A; Siviero A; Steinmetz M; Watson FG; Williams ME Science; 2014 Aug; 345(6198):791-5. PubMed ID: 25124434 [TBL] [Abstract][Full Text] [Related]
8. The interstellar C-H stretching band near 3.4 microns: constraints on the composition of organic material in the diffuse interstellar medium. Sandford SA; Allamandola LJ; Tielens AG; Sellgren K; Tapia M; Pendleton Y Astrophys J; 1991 Apr; 371():607-20. PubMed ID: 11538103 [TBL] [Abstract][Full Text] [Related]
9. Detection of organic matter in interstellar grains. Pendleton YJ Orig Life Evol Biosph; 1997 Jun; 27(1-3):53-78. PubMed ID: 9150567 [TBL] [Abstract][Full Text] [Related]
10. High energy electron irradiation of interstellar carbonaceous dust analogs: Cosmic ray effects on the carriers of the 3.4 µm absorption band. Maté B; Molpeceres G; Jiménez-Redondo M; Tanarro I; Herrero VJ Astrophys J; 2016 Nov; 831(1):. PubMed ID: 28133388 [TBL] [Abstract][Full Text] [Related]
12. Small-scale-structure of the interstellar medium probed through diffuse band observations. Cordiner MA; Fossey SJ; Smith AM; Sarre PJ Faraday Discuss; 2006; 133():403-13; discussion 427-52. PubMed ID: 17191460 [TBL] [Abstract][Full Text] [Related]
13. The unidentified diffuse interstellar bands as evidence for large organic molecules in the interstellar medium. Snow TP Spectrochim Acta A Mol Biomol Spectrosc; 2001 Mar; 57(4):615-26. PubMed ID: 11345242 [TBL] [Abstract][Full Text] [Related]
14. The interstellar chemistry of PAH cations. Snow TP; Le Page V; Keheyan Y; Bierbaum VM Nature; 1998 Jan; 391(6664):259-60. PubMed ID: 9440689 [TBL] [Abstract][Full Text] [Related]
15. Carbon chain abundance in the diffuse interstellar medium. Allamandola LJ; Hudgins DM; Bauschlicher CW; Langhoff SR Astron Astrophys; 1999 Dec; 352(2):659-64. PubMed ID: 11543325 [TBL] [Abstract][Full Text] [Related]
16. The cycling of carbon into and out of dust. Jones AP; Ysard N; Köhler M; Fanciullo L; Bocchio M; Micelotta E; Verstraete L; Guillet V Faraday Discuss; 2014; 168():313-26. PubMed ID: 25302387 [TBL] [Abstract][Full Text] [Related]
17. IRON: A KEY ELEMENT FOR UNDERSTANDING THE ORIGIN AND EVOLUTION OF INTERSTELLAR DUST. Dwek E Astrophys J; 2016 Jul; 825(2):. PubMed ID: 32747835 [TBL] [Abstract][Full Text] [Related]
18. Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. Allamandola LJ; Tielens AG; Barker JR Astrophys J Suppl Ser; 1989 Dec; 71():733-75. PubMed ID: 11542189 [TBL] [Abstract][Full Text] [Related]
20. Iron Complexes as Potential Carriers of Diffuse Interstellar Bands: The Photodissociation Spectrum of Fe Juanes M; Jin S; Saragi RT; van der Linde C; Ebenbichler A; Przybilla N; Ončák M; Beyer MK J Phys Chem A; 2024 Feb; 128(7):1306-1312. PubMed ID: 38347749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]