These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 28083564)

  • 1. Direct Heme Uptake by Phytoplankton-Associated
    Hogle SL; Brahamsha B; Barbeau KA
    mSystems; 2017; 2(1):. PubMed ID: 28083564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of heme as an iron source by marine Alphaproteobacteria in the Roseobacter clade.
    Roe KL; Hogle SL; Barbeau KA
    Appl Environ Microbiol; 2013 Sep; 79(18):5753-62. PubMed ID: 23872569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryptic carbon and sulfur cycling between surface ocean plankton.
    Durham BP; Sharma S; Luo H; Smith CB; Amin SA; Bender SJ; Dearth SP; Van Mooy BA; Campagna SR; Kujawinski EB; Armbrust EV; Moran MA
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):453-7. PubMed ID: 25548163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic Study of Substrate-Specific Transport Mechanisms for Iron and Carbon in the Marine Copiotroph Alteromonas macleodii.
    Manck LE; Espinoza JL; Dupont CL; Barbeau KA
    mSystems; 2020 Apr; 5(2):. PubMed ID: 32345736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heme uptake by Microscilla marina and evidence for heme uptake systems in the genomes of diverse marine bacteria.
    Hopkinson BM; Roe KL; Barbeau KA
    Appl Environ Microbiol; 2008 Oct; 74(20):6263-70. PubMed ID: 18757577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the Phytoplankton Heme
    Louropoulou E; Gledhill M; Browning TJ; Desai DK; Barraqueta JM; Tonnard M; Sarthou G; Planquette H; Bowie AR; Schmitz RA; LaRoche J; Achterberg EP
    Front Microbiol; 2019; 10():1566. PubMed ID: 31354666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom.
    Landa M; Burns AS; Roth SJ; Moran MA
    ISME J; 2017 Dec; 11(12):2677-2690. PubMed ID: 28731474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Model
    Sharpe GC; Gifford SM; Septer AN
    mSystems; 2020 Aug; 5(4):. PubMed ID: 32788406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phytoplankton Nannochloropsis oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of fish pathogen Vibrio anguillarum.
    Sharifah EN; Eguchi M
    PLoS One; 2011; 6(10):e26756. PubMed ID: 22053210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of
    Schwiesow L; Mettert E; Wei Y; Miller HK; Herrera NG; Balderas D; Kiley PJ; Auerbuch V
    Front Cell Infect Microbiol; 2018; 8():47. PubMed ID: 29520342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Major differences of bacterial diversity and activity inside and outside of a natural iron-fertilized phytoplankton bloom in the Southern Ocean.
    West NJ; Obernosterer I; Zemb O; Lebaron P
    Environ Microbiol; 2008 Mar; 10(3):738-56. PubMed ID: 18237307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tight Regulation of Extracellular Superoxide Points to Its Vital Role in the Physiology of the Globally Relevant
    Hansel CM; Diaz JM; Plummer S
    mBio; 2019 Mar; 10(2):. PubMed ID: 30862752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Siderophore-mediated iron uptake in two clades of Marinobacter spp. associated with phytoplankton: the role of light.
    Amin SA; Green DH; Gärdes A; Romano A; Trimble L; Carrano CJ
    Biometals; 2012 Feb; 25(1):181-92. PubMed ID: 21947474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interkingdom Cross-Feeding of Ammonium from Marine Methylamine-Degrading Bacteria to the Diatom Phaeodactylum tricornutum.
    Suleiman M; Zecher K; Yücel O; Jagmann N; Philipp B
    Appl Environ Microbiol; 2016 Dec; 82(24):7113-7122. PubMed ID: 27694241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake.
    Morrissey J; Sutak R; Paz-Yepes J; Tanaka A; Moustafa A; Veluchamy A; Thomas Y; Botebol H; Bouget FY; McQuaid JB; Tirichine L; Allen AE; Lesuisse E; Bowler C
    Curr Biol; 2015 Feb; 25(3):364-371. PubMed ID: 25557662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "You produce while I clean up", a strategy revealed by exoproteomics during Synechococcus-Roseobacter interactions.
    Christie-Oleza JA; Scanlan DJ; Armengaud J
    Proteomics; 2015 Oct; 15(20):3454-62. PubMed ID: 25728650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic reconstructions and potential metabolic strategies of generalist and specialist heterotrophic bacteria associated with an estuary Synechococcus culture.
    Zheng Q; Lu J; Wang Y; Jiao N
    FEMS Microbiol Ecol; 2019 Mar; 95(3):. PubMed ID: 30689834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms underlying roseobacter-phytoplankton symbioses.
    Geng H; Belas R
    Curr Opin Biotechnol; 2010 Jun; 21(3):332-8. PubMed ID: 20399092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heme b distributions through the Atlantic Ocean: evidence for "anemic" phytoplankton populations.
    Louropoulou E; Gledhill M; Achterberg EP; Browning TJ; Honey DJ; Schmitz RA; Tagliabue A
    Sci Rep; 2020 Mar; 10(1):4551. PubMed ID: 32165723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trace Metal Acquisition by Marine Heterotrophic Bacterioplankton with Contrasting Trophic Strategies.
    Hogle SL; Thrash JC; Dupont CL; Barbeau KA
    Appl Environ Microbiol; 2016 Jan; 82(5):1613-1624. PubMed ID: 26729720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.