BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28083587)

  • 1. Thermal transport across nanoparticle-fluid interfaces: the interplay of interfacial curvature and nanoparticle-fluid interactions.
    Tascini AS; Armstrong J; Chiavazzo E; Fasano M; Asinari P; Bresme F
    Phys Chem Chem Phys; 2017 Jan; 19(4):3244-3253. PubMed ID: 28083587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Curvature and temperature-dependent thermal interface conductance between nanoscale gold and water.
    Wilson BA; Nielsen SO; Randrianalisoa JH; Qin Z
    J Chem Phys; 2022 Aug; 157(5):054703. PubMed ID: 35933210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D; Ma R; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial Control of Heat Flow at the Nanoscale Using Janus Particles.
    Olarte-Plata JD; Gabriel J; Albella P; Bresme F
    ACS Nano; 2022 Jan; 16(1):694-709. PubMed ID: 34918910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular dynamics study to determine the solid-liquid interfacial tension using test area simulation method (TASM).
    Nair AR; Sathian SP
    J Chem Phys; 2012 Aug; 137(8):084702. PubMed ID: 22938254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous thermal conductance of nanoparticle-fluid interfaces: An atomistic nodal approach.
    Jiang M; Olarte-Plata JD; Bresme F
    J Chem Phys; 2022 Jan; 156(4):044701. PubMed ID: 35105082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-dependent effects of the thermal transport at gold nanoparticle-water interfaces.
    Gutiérrez-Varela O; Merabia S; Santamaria R
    J Chem Phys; 2022 Aug; 157(8):084702. PubMed ID: 36050018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Cost Nanostructures from Nanoparticle-Assisted Large-Scale Lithography Significantly Enhance Thermal Energy Transport across Solid Interfaces.
    Lee E; Menumerov E; Hughes RA; Neretina S; Luo T
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34690-34698. PubMed ID: 30209944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deconstructing Temperature Gradients across Fluid Interfaces: The Structural Origin of the Thermal Resistance of Liquid-Vapor Interfaces.
    Muscatello J; Chacón E; Tarazona P; Bresme F
    Phys Rev Lett; 2017 Jul; 119(4):045901. PubMed ID: 29341757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Transport across Surfactant Layers on Gold Nanorods in Aqueous Solution.
    Wu X; Ni Y; Zhu J; Burrows ND; Murphy CJ; Dumitrica T; Wang X
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10581-9. PubMed ID: 26938771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal transport in polyethylene and at polyethylene-diamond interfaces investigated using molecular dynamics simulation.
    Ni B; Watanabe T; Phillpot SR
    J Phys Condens Matter; 2009 Feb; 21(8):084219. PubMed ID: 21817371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial Defect Vibrations Enhance Thermal Transport in Amorphous Multilayers with Ultrahigh Thermal Boundary Conductance.
    Giri A; King SW; Lanford WA; Mei AB; Merrill D; Li L; Oviedo R; Richards J; Olson DH; Braun JL; Gaskins JT; Deangelis F; Henry A; Hopkins PE
    Adv Mater; 2018 Nov; 30(44):e1804097. PubMed ID: 30222218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions.
    Yang H; Tang Y; Yang P
    Nanoscale; 2019 Aug; 11(30):14155-14163. PubMed ID: 31334741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat and mass transfer through interfaces of nanosized bubbles/droplets: the influence of interface curvature.
    Wilhelmsen Ø; Bedeaux D; Kjelstrup S
    Phys Chem Chem Phys; 2014 Jun; 16(22):10573-86. PubMed ID: 24740009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructures Significantly Enhance Thermal Transport across Solid Interfaces.
    Lee E; Zhang T; Yoo T; Guo Z; Luo T
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35505-35512. PubMed ID: 27983798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle assembly and transport at liquid-liquid interfaces.
    Lin Y; Skaff H; Emrick T; Dinsmore AD; Russell TP
    Science; 2003 Jan; 299(5604):226-9. PubMed ID: 12522244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Transport across SiC-Water Interfaces.
    Gonzalez-Valle CU; Kumar S; Ramos-Alvarado B
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29179-29186. PubMed ID: 30063129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal transport at a solid-nanofluid interface: from increase of thermal resistance towards a shift of rapid boiling.
    Han H; Merabia S; Müller-Plathe F
    Nanoscale; 2017 Jun; 9(24):8314-8320. PubMed ID: 28585964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Fin Effect from Heterogeneous Self-Assembled Monolayer Enhances Thermal Conductance across Hard-Soft Interfaces.
    Wei X; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33740-33748. PubMed ID: 28885818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.