BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28083982)

  • 1. Novel reuterin-related compounds suppress odour by periodontopathic bacteria.
    Fujiwara N; Murakami K; Nakao M; Toguchi M; Yumoto H; Amoh T; Hirota K; Matsuo T; Sano S; Ozaki K; Miyake Y
    Oral Dis; 2017 May; 23(4):492-497. PubMed ID: 28083982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cetylpyridinium chloride suppresses gene expression associated with halitosis.
    Liu J; Ling JQ; Wu CD
    Arch Oral Biol; 2013 Nov; 58(11):1686-91. PubMed ID: 24112735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The differential expression of mgl mRNA by Porphyromonas gingivalis affects the production of methyl mercaptan.
    Ouhara K; Iwasaki Y; Kajiya M; Savitri IJ; Kitagawa M; Tokunaga N; Shintani T; Ogawa I; Hino T; Fujita T; Shiba H; Kurihara H
    Oral Dis; 2015 Jul; 21(5):626-33. PubMed ID: 25703825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of malodorous gas formation by oral bacteria with cetylpyridinium and zinc chloride.
    Kang JH; Kim DJ; Choi BK; Park JW
    Arch Oral Biol; 2017 Dec; 84():133-138. PubMed ID: 28987726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Halitosis vaccines targeting FomA, a biofilm-bridging protein of fusobacteria nucleatum.
    Liu PF; Huang IF; Shu CW; Huang CM
    Curr Mol Med; 2013 Sep; 13(8):1358-67. PubMed ID: 23865430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between halitosis and periodontal disease - associated oral bacteria in tongue coatings.
    Amou T; Hinode D; Yoshioka M; Grenier D
    Int J Dent Hyg; 2014 May; 12(2):145-51. PubMed ID: 23890391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association between oral malodour and periodontal disease-related parameters in the general population.
    Apatzidou AD; Bakirtzoglou E; Vouros I; Karagiannis V; Papa A; Konstantinidis A
    Acta Odontol Scand; 2013 Jan; 71(1):189-95. PubMed ID: 22339235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria.
    Sun M; Zhou Z; Dong J; Zhang J; Xia Y; Shu R
    Microb Pathog; 2016 Oct; 99():196-203. PubMed ID: 27565090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenolic antibacterials from Piper betle in the prevention of halitosis.
    Ramji N; Ramji N; Iyer R; Chandrasekaran S
    J Ethnopharmacol; 2002 Nov; 83(1-2):149-52. PubMed ID: 12413722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myrsinoic acid B inhibits the production of hydrogen sulfide by periodontal pathogens in vitro.
    Ito S; Shimura S; Tanaka T; Yaegaki K
    J Breath Res; 2010 Jun; 4(2):026005. PubMed ID: 21383473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved antibacterial effects of alkali-transformed saponin from quinoa husks against halitosis-related bacteria.
    Sun X; Yang X; Xue P; Zhang Z; Ren G
    BMC Complement Altern Med; 2019 Feb; 19(1):46. PubMed ID: 30755185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of a mouthwash containing ε-poly-L-lysine, funme peptides and domiphen in reducing halitosis and supragingival plaque: a randomized clinical trial.
    Shen S; Liu X; Huang J; Sun Y; Liu B; Song W; Meng L; Du M; Feng Q
    BMC Oral Health; 2024 May; 24(1):525. PubMed ID: 38702623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rice peptide with amino acid substitution inhibits biofilm formation by Porphyromonas gingivalis and Fusobacterium nucleatum.
    Matsugishi A; Aoki-Nonaka Y; Yokoji-Takeuchi M; Yamada-Hara M; Mikami Y; Hayatsu M; Terao Y; Domon H; Taniguchi M; Takahashi N; Yamazaki K; Tabeta K
    Arch Oral Biol; 2021 Jan; 121():104956. PubMed ID: 33157493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivating effects of the lactoperoxidase system on bacterial lyases involved in oral malodour production.
    Nakano M; Shin K; Wakabayashi H; Yamauchi K; Abe F; Hironaka S
    J Med Microbiol; 2015 Oct; 64(10):1244-1252. PubMed ID: 26242770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactobacillus reuteri AN417 cell-free culture supernatant as a novel antibacterial agent targeting oral pathogenic bacteria.
    Yang KM; Kim JS; Kim HS; Kim YY; Oh JK; Jung HW; Park DS; Bae KH
    Sci Rep; 2021 Jan; 11(1):1631. PubMed ID: 33452304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative detection of volatile sulfur compound- producing microorganisms in oral specimens using real-time PCR.
    Kato H; Yoshida A; Awano S; Ansai T; Takehara T
    Oral Dis; 2005; 11 Suppl 1():67-71. PubMed ID: 15752104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro effects of Melaleuca alternifolia essential oil on growth and production of volatile sulphur compounds by oral bacteria.
    Graziano TS; Calil CM; Sartoratto A; Franco GC; Groppo FC; Cogo-Müller K
    J Appl Oral Sci; 2016; 24(6):582-589. PubMed ID: 28076463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory effect of Weissella cibaria isolates on the production of volatile sulphur compounds.
    Kang MS; Kim BG; Chung J; Lee HC; Oh JS
    J Clin Periodontol; 2006 Mar; 33(3):226-32. PubMed ID: 16489950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interspecies metabolite transfer fuels the methionine metabolism of
    Hara T; Sakanaka A; Lamont RJ; Amano A; Kuboniwa M
    mSystems; 2024 Feb; 9(2):e0076423. PubMed ID: 38289043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial effectiveness of cetylpyridinium chloride and zinc chloride-containing mouthrinses on bacteria of halitosis and peri-implant disease.
    Kang JH; Jang YJ; Kim DJ; Park JW
    Int J Oral Maxillofac Implants; 2015; 30(6):1341-7. PubMed ID: 26478974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.