These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 28084141)
21. Role of virtual reality in congenital heart disease. Ong CS; Krishnan A; Huang CY; Spevak P; Vricella L; Hibino N; Garcia JR; Gaur L Congenit Heart Dis; 2018 May; 13(3):357-361. PubMed ID: 29399969 [TBL] [Abstract][Full Text] [Related]
22. Development of a Patient-Specific 3D-Printed Liver Model for Preoperative Planning. Madurska MJ; Poyade M; Eason D; Rea P; Watson AJ Surg Innov; 2017 Apr; 24(2):145-150. PubMed ID: 28134003 [TBL] [Abstract][Full Text] [Related]
23. Creating 3D models from Radiologic Images for Virtual Reality Medical Education Modules. Ammanuel S; Brown I; Uribe J; Rehani B J Med Syst; 2019 May; 43(6):166. PubMed ID: 31053902 [TBL] [Abstract][Full Text] [Related]
24. Application of 3-Dimensional Printing in a Case of Osteogenesis Imperfecta for Patient Education, Anatomic Understanding, Preoperative Planning, and Intraoperative Evaluation. Eisenmenger LB; Wiggins RH; Fults DW; Huo EJ World Neurosurg; 2017 Nov; 107():1049.e1-1049.e7. PubMed ID: 28823657 [TBL] [Abstract][Full Text] [Related]
25. Cardiothoracic Applications of 3-dimensional Printing. Giannopoulos AA; Steigner ML; George E; Barile M; Hunsaker AR; Rybicki FJ; Mitsouras D J Thorac Imaging; 2016 Sep; 31(5):253-72. PubMed ID: 27149367 [TBL] [Abstract][Full Text] [Related]
26. A combination of three-dimensional printing and computer-assisted virtual surgical procedure for preoperative planning of acetabular fracture reduction. Zeng C; Xing W; Wu Z; Huang H; Huang W Injury; 2016 Oct; 47(10):2223-2227. PubMed ID: 27372187 [TBL] [Abstract][Full Text] [Related]
27. [The role of 3-D imaging and computer-based postprocessing for surgery of the liver and pancreas]. Grenacher L; Thorn M; Knaebel HP; Vetter M; Hassenpflug P; Kraus T; Meinzer HP; Büchler MW; Kauffmann GW; Richter GM Rofo; 2005 Sep; 177(9):1219-26. PubMed ID: 16123867 [TBL] [Abstract][Full Text] [Related]
28. Mixed Reality and 3D Printed Models for Planning and Execution of Face Transplantation. Cho KH; Papay FA; Yanof J; West K; Bassiri Gharb B; Rampazzo A; Gastman B; Schwarz GS Ann Surg; 2021 Dec; 274(6):e1238-e1246. PubMed ID: 32224738 [TBL] [Abstract][Full Text] [Related]
29. 3D imaging technologies in minimally invasive kidney and prostate cancer surgery: which is the urologists' perception? Amparore D; Pecoraro A; Checcucci E; DE Cillis S; Piramide F; Volpi G; Piana A; Verri P; Granato S; Sica M; Manfredi M; Fiori C; Autorino R; Porpiglia F Minerva Urol Nephrol; 2022 Apr; 74(2):178-185. PubMed ID: 33769019 [TBL] [Abstract][Full Text] [Related]
30. A new way of presenting diagnostic imaging studies in surgical planning. Alzubedi A; Kusz M; Kuczyńska M; Białek W; Bicki J; Rudzki S Pol Przegl Chir; 2018 Nov; 91(4):48-51. PubMed ID: 31481641 [TBL] [Abstract][Full Text] [Related]
31. Early Experience With Virtual and Synchronized Augmented Reality Platform for Preoperative Planning and Intraoperative Navigation: A Case Series. Louis RG; Steinberg GK; Duma C; Britz G; Mehta V; Pace J; Selman W; Jean WC Oper Neurosurg (Hagerstown); 2021 Sep; 21(4):189-196. PubMed ID: 34171909 [TBL] [Abstract][Full Text] [Related]
32. Mixed Reality Combined with Three-Dimensional Printing Technology in Total Hip Arthroplasty: An Updated Review with a Preliminary Case Presentation. Lei PF; Su SL; Kong LY; Wang CG; Zhong D; Hu YH Orthop Surg; 2019 Oct; 11(5):914-920. PubMed ID: 31663276 [TBL] [Abstract][Full Text] [Related]
34. 3D Printing in Liver Surgery: A Systematic Review. Witowski JS; Coles-Black J; Zuzak TZ; Pędziwiatr M; Chuen J; Major P; Budzyński A Telemed J E Health; 2017 Dec; 23(12):943-947. PubMed ID: 28530492 [TBL] [Abstract][Full Text] [Related]
35. Impact of 3D printing technology on the comprehension of surgical liver anatomy. Yang T; Lin S; Xie Q; Ouyang W; Tan T; Li J; Chen Z; Yang J; Wu H; Pan J; Hu C; Zou Y Surg Endosc; 2019 Feb; 33(2):411-417. PubMed ID: 29943060 [TBL] [Abstract][Full Text] [Related]
36. Three-dimensional virtual and printed models for planning adult cardiovascular surgery. Borracci RA; Ferreira LM; Alvarez Gallesio JM; Tenorio Núñez OM; David M; Eyheremendy EP Acta Cardiol; 2021 Jul; 76(5):534-543. PubMed ID: 33283655 [TBL] [Abstract][Full Text] [Related]
37. The Reconstructive Metaverse - Collaboration in Real-Time Shared Mixed Reality Environments for Microsurgical Reconstruction. Necker FN; Cholok DJ; Shaheen MS; Fischer MJ; Gifford K; El Chemaly T; Leuze CW; Scholz M; Daniel BL; Momeni A Surg Innov; 2024 Oct; 31(5):563-566. PubMed ID: 38905568 [TBL] [Abstract][Full Text] [Related]
38. Creation of Three-dimensional Anatomic Models in Pediatric Surgical Patients Using Cross-sectional Imaging: A Demonstration of Low-cost Methods and Applications. Ryan ML; Knod JL; Pandya SR J Pediatr Surg; 2024 Mar; 59(3):426-431. PubMed ID: 37981543 [TBL] [Abstract][Full Text] [Related]
39. Fast-track virtual reality for cardiac imaging in congenital heart disease. Raimondi F; Vida V; Godard C; Bertelli F; Reffo E; Boddaert N; El Beheiry M; Masson JB J Card Surg; 2021 Jul; 36(7):2598-2602. PubMed ID: 33760302 [TBL] [Abstract][Full Text] [Related]
40. A Systematic Review of Three-Dimensional Printing in Liver Disease. Perica ER; Sun Z J Digit Imaging; 2018 Oct; 31(5):692-701. PubMed ID: 29633052 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]