BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 28084141)

  • 21. Role of virtual reality in congenital heart disease.
    Ong CS; Krishnan A; Huang CY; Spevak P; Vricella L; Hibino N; Garcia JR; Gaur L
    Congenit Heart Dis; 2018 May; 13(3):357-361. PubMed ID: 29399969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a Patient-Specific 3D-Printed Liver Model for Preoperative Planning.
    Madurska MJ; Poyade M; Eason D; Rea P; Watson AJ
    Surg Innov; 2017 Apr; 24(2):145-150. PubMed ID: 28134003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Creating 3D models from Radiologic Images for Virtual Reality Medical Education Modules.
    Ammanuel S; Brown I; Uribe J; Rehani B
    J Med Syst; 2019 May; 43(6):166. PubMed ID: 31053902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of 3-Dimensional Printing in a Case of Osteogenesis Imperfecta for Patient Education, Anatomic Understanding, Preoperative Planning, and Intraoperative Evaluation.
    Eisenmenger LB; Wiggins RH; Fults DW; Huo EJ
    World Neurosurg; 2017 Nov; 107():1049.e1-1049.e7. PubMed ID: 28823657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiothoracic Applications of 3-dimensional Printing.
    Giannopoulos AA; Steigner ML; George E; Barile M; Hunsaker AR; Rybicki FJ; Mitsouras D
    J Thorac Imaging; 2016 Sep; 31(5):253-72. PubMed ID: 27149367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A combination of three-dimensional printing and computer-assisted virtual surgical procedure for preoperative planning of acetabular fracture reduction.
    Zeng C; Xing W; Wu Z; Huang H; Huang W
    Injury; 2016 Oct; 47(10):2223-2227. PubMed ID: 27372187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The role of 3-D imaging and computer-based postprocessing for surgery of the liver and pancreas].
    Grenacher L; Thorn M; Knaebel HP; Vetter M; Hassenpflug P; Kraus T; Meinzer HP; Büchler MW; Kauffmann GW; Richter GM
    Rofo; 2005 Sep; 177(9):1219-26. PubMed ID: 16123867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mixed Reality and 3D Printed Models for Planning and Execution of Face Transplantation.
    Cho KH; Papay FA; Yanof J; West K; Bassiri Gharb B; Rampazzo A; Gastman B; Schwarz GS
    Ann Surg; 2021 Dec; 274(6):e1238-e1246. PubMed ID: 32224738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D imaging technologies in minimally invasive kidney and prostate cancer surgery: which is the urologists' perception?
    Amparore D; Pecoraro A; Checcucci E; DE Cillis S; Piramide F; Volpi G; Piana A; Verri P; Granato S; Sica M; Manfredi M; Fiori C; Autorino R; Porpiglia F
    Minerva Urol Nephrol; 2022 Apr; 74(2):178-185. PubMed ID: 33769019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new way of presenting diagnostic imaging studies in surgical planning.
    Alzubedi A; Kusz M; Kuczyńska M; Białek W; Bicki J; Rudzki S
    Pol Przegl Chir; 2018 Nov; 91(4):48-51. PubMed ID: 31481641
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early Experience With Virtual and Synchronized Augmented Reality Platform for Preoperative Planning and Intraoperative Navigation: A Case Series.
    Louis RG; Steinberg GK; Duma C; Britz G; Mehta V; Pace J; Selman W; Jean WC
    Oper Neurosurg (Hagerstown); 2021 Sep; 21(4):189-196. PubMed ID: 34171909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mixed Reality Combined with Three-Dimensional Printing Technology in Total Hip Arthroplasty: An Updated Review with a Preliminary Case Presentation.
    Lei PF; Su SL; Kong LY; Wang CG; Zhong D; Hu YH
    Orthop Surg; 2019 Oct; 11(5):914-920. PubMed ID: 31663276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collaborative Virtual Reality Real-Time 3D Image Editing for Chest Wall Resections and Reconstruction Planning.
    Feodorovici P; Schnorr P; Bedetti B; Zalepugas D; Schmidt J; Arensmeyer JC
    Innovations (Phila); 2023; 18(6):525-530. PubMed ID: 38073259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D Printing in Liver Surgery: A Systematic Review.
    Witowski JS; Coles-Black J; Zuzak TZ; Pędziwiatr M; Chuen J; Major P; Budzyński A
    Telemed J E Health; 2017 Dec; 23(12):943-947. PubMed ID: 28530492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of 3D printing technology on the comprehension of surgical liver anatomy.
    Yang T; Lin S; Xie Q; Ouyang W; Tan T; Li J; Chen Z; Yang J; Wu H; Pan J; Hu C; Zou Y
    Surg Endosc; 2019 Feb; 33(2):411-417. PubMed ID: 29943060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional virtual and printed models for planning adult cardiovascular surgery.
    Borracci RA; Ferreira LM; Alvarez Gallesio JM; Tenorio Núñez OM; David M; Eyheremendy EP
    Acta Cardiol; 2021 Jul; 76(5):534-543. PubMed ID: 33283655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Creation of Three-dimensional Anatomic Models in Pediatric Surgical Patients Using Cross-sectional Imaging: A Demonstration of Low-cost Methods and Applications.
    Ryan ML; Knod JL; Pandya SR
    J Pediatr Surg; 2024 Mar; 59(3):426-431. PubMed ID: 37981543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast-track virtual reality for cardiac imaging in congenital heart disease.
    Raimondi F; Vida V; Godard C; Bertelli F; Reffo E; Boddaert N; El Beheiry M; Masson JB
    J Card Surg; 2021 Jul; 36(7):2598-2602. PubMed ID: 33760302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Systematic Review of Three-Dimensional Printing in Liver Disease.
    Perica ER; Sun Z
    J Digit Imaging; 2018 Oct; 31(5):692-701. PubMed ID: 29633052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional technologies in presurgical planning of bone surgeries: current evidence and future perspectives.
    Portnoy Y; Koren J; Khoury A; Factor S; Dadia S; Ran Y; Benady A
    Int J Surg; 2023 Jan; 109(1):3-10. PubMed ID: 36799780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.