These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 28084141)
41. Three-dimensional technologies in presurgical planning of bone surgeries: current evidence and future perspectives. Portnoy Y; Koren J; Khoury A; Factor S; Dadia S; Ran Y; Benady A Int J Surg; 2023 Jan; 109(1):3-10. PubMed ID: 36799780 [TBL] [Abstract][Full Text] [Related]
42. [IMMERSIVE SURGICAL NAVIGATION USING SPATIAL INTERACTIVE VIRTUAL REALITY AND HOLOGRAPHIC AUGMENTED REALITY]. Sugimoto M; Shiga Y; Abe M; Kameyama S; Azuma T Nihon Geka Gakkai Zasshi; 2016 Sep; 117(5):387-94. PubMed ID: 30169000 [TBL] [Abstract][Full Text] [Related]
43. 3D-printed model improves clinical assessment of surgeons on anatomy. Zheng B; Wang X; Zheng Y; Feng J J Robot Surg; 2019 Feb; 13(1):61-67. PubMed ID: 29693206 [TBL] [Abstract][Full Text] [Related]
44. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing. Goo HW; Park SJ; Yoo SJ Korean J Radiol; 2020 Feb; 21(2):133-145. PubMed ID: 31997589 [TBL] [Abstract][Full Text] [Related]
45. From stereoscopic recording to virtual reality headsets: Designing a new way to learn surgery. Ros M; Trives JV; Lonjon N Neurochirurgie; 2017 Mar; 63(1):1-5. PubMed ID: 28233530 [TBL] [Abstract][Full Text] [Related]
46. Office-Based Three-Dimensional Printing Workflow for Craniomaxillofacial Fracture Repair. Elegbede A; Diaconu SC; McNichols CHL; Seu M; Rasko YM; Grant MP; Nam AJ J Craniofac Surg; 2018 Jul; 29(5):e440-e444. PubMed ID: 29521761 [TBL] [Abstract][Full Text] [Related]
47. Virtual Reality for Surgical Planning - Evaluation Based on Two Liver Tumor Resections. Reinschluessel AV; Muender T; Salzmann D; Döring T; Malaka R; Weyhe D Front Surg; 2022; 9():821060. PubMed ID: 35296126 [TBL] [Abstract][Full Text] [Related]
48. Using 3D printed models for planning and guidance during endovascular intervention: a technical advance. Itagaki MW Diagn Interv Radiol; 2015; 21(4):338-41. PubMed ID: 26027767 [TBL] [Abstract][Full Text] [Related]
50. [Liver Surgery 4.0 - Planning, Volumetry, Navigation and Virtual Reality]. Huber T; Huettl F; Hanke LI; Vradelis L; Heinrich S; Hansen C; Boedecker C; Lang H Zentralbl Chir; 2022 Aug; 147(4):361-368. PubMed ID: 35793686 [TBL] [Abstract][Full Text] [Related]
51. Immersive 3-Dimensional Virtual Reality Modeling for Case-Specific Presurgical Discussions in Cerebrovascular Neurosurgery. Sugiyama T; Clapp T; Nelson J; Eitel C; Motegi H; Nakayama N; Sasaki T; Tokairin K; Ito M; Kazumata K; Houkin K Oper Neurosurg (Hagerstown); 2021 Feb; 20(3):289-299. PubMed ID: 33294936 [TBL] [Abstract][Full Text] [Related]
52. Virtual reality and 3D printing in clinical anesthesia: a case series of two years' experience in a single tertiary medical centre. Shaylor R; Golden E; Verenkin V; Kolodii M; Peer M; Dadia S; Matot I; Cohen B Can J Anaesth; 2023 Sep; 70(9):1433-1440. PubMed ID: 37498441 [TBL] [Abstract][Full Text] [Related]
53. Combining Augmented Reality and 3D Printing to Improve Surgical Workflows in Orthopedic Oncology: Smartphone Application and Clinical Evaluation. Moreta-Martinez R; Pose-Díez-de-la-Lastra A; Calvo-Haro JA; Mediavilla-Santos L; Pérez-Mañanes R; Pascau J Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672053 [TBL] [Abstract][Full Text] [Related]
54. Use of 3D Prototypes for Complex Surgical Oncologic Cases. Krauel L; Fenollosa F; Riaza L; Pérez M; Tarrado X; Morales A; Gomà J; Mora J World J Surg; 2016 Apr; 40(4):889-94. PubMed ID: 26541866 [TBL] [Abstract][Full Text] [Related]
55. Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors. Oishi M; Fukuda M; Yajima N; Yoshida K; Takahashi M; Hiraishi T; Takao T; Saito A; Fujii Y J Neurosurg; 2013 Jul; 119(1):94-105. PubMed ID: 23581591 [TBL] [Abstract][Full Text] [Related]
56. Mixed Reality in Visceral Surgery: Development of a Suitable Workflow and Evaluation of Intraoperative Use-cases. Sauer IM; Queisner M; Tang P; Moosburner S; Hoepfner O; Horner R; Lohmann R; Pratschke J Ann Surg; 2017 Nov; 266(5):706-712. PubMed ID: 28767561 [TBL] [Abstract][Full Text] [Related]
57. Impact of personalized three-dimensional -3D- printed pelvicalyceal system models on patient information in percutaneous nephrolithotripsy surgery: a pilot study. Atalay HA; Canat HL; Ülker V; Alkan İ; Özkuvanci Ü; Altunrende F Int Braz J Urol; 2017; 43(3):470-475. PubMed ID: 28338309 [TBL] [Abstract][Full Text] [Related]
58. Prospective Evaluation of Precision Multimodal Gallbladder Surgery Navigation: Virtual Reality, Near-infrared Fluorescence, and X-ray-based Intraoperative Cholangiography. Diana M; Soler L; Agnus V; D'Urso A; Vix M; Dallemagne B; Faucher V; Roy C; Mutter D; Marescaux J; Pessaux P Ann Surg; 2017 Nov; 266(5):890-897. PubMed ID: 28742709 [TBL] [Abstract][Full Text] [Related]
59. [Applications of 3D printing in medicine; 5 years later]. Visser J; Melchels FPW; Weinans H; Kruyt MC; Malda J Ned Tijdschr Geneeskd; 2019 May; 163():. PubMed ID: 31166096 [TBL] [Abstract][Full Text] [Related]
60. Minimally invasive superficial temporal artery to middle cerebral artery bypass through a minicraniotomy: benefit of three-dimensional virtual reality planning using magnetic resonance angiography. Fischer G; Stadie A; Schwandt E; Gawehn J; Boor S; Marx J; Oertel J Neurosurg Focus; 2009 May; 26(5):E20. PubMed ID: 19408999 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]