These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 28084491)
1. Fracture of a model cohesive granular material. Schmeink A; Goehring L; Hemmerle A Soft Matter; 2017 Feb; 13(5):1040-1047. PubMed ID: 28084491 [TBL] [Abstract][Full Text] [Related]
2. A cohesive granular material with tunable elasticity. Hemmerle A; Schröter M; Goehring L Sci Rep; 2016 Oct; 6():35650. PubMed ID: 27774988 [TBL] [Abstract][Full Text] [Related]
3. Measuring and upscaling micromechanical interactions in a cohesive granular material. Hemmerle A; Yamaguchi Y; Makowski M; Bäumchen O; Goehring L Soft Matter; 2021 Jun; 17(23):5806-5814. PubMed ID: 34032258 [TBL] [Abstract][Full Text] [Related]
4. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone. Chong AC; Miller F; Buxton M; Friis EA J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469 [TBL] [Abstract][Full Text] [Related]
5. Cohesive finite element modeling of age-related toughness loss in human cortical bone. Ural A; Vashishth D J Biomech; 2006; 39(16):2974-82. PubMed ID: 16375909 [TBL] [Abstract][Full Text] [Related]
6. Fracture length scales in human cortical bone: the necessity of nonlinear fracture models. Yang QD; Cox BN; Nalla RK; Ritchie RO Biomaterials; 2006 Mar; 27(9):2095-113. PubMed ID: 16271757 [TBL] [Abstract][Full Text] [Related]
7. Re-evaluating the toughness of human cortical bone. Yang QD; Cox BN; Nalla RK; Ritchie RO Bone; 2006 Jun; 38(6):878-87. PubMed ID: 16338188 [TBL] [Abstract][Full Text] [Related]
8. In situ compatibilizer-reinforced interface between a flexible polymer (a functionalized polypropylene) and a rodlike polymer (a thermotropic liquid crystalline polymer). Seo Y; Ninh TH; Hong SM; Kim S; Kang TJ; Kim H; Kim J Langmuir; 2006 Mar; 22(7):3062-7. PubMed ID: 16548558 [TBL] [Abstract][Full Text] [Related]
9. [The investigation of the testing method on fracture toughness of dental adhesive resins]. Ai H; Zhao Y; Nagai M; Miyairi H; Yasuda N Hua Xi Kou Qiang Yi Xue Za Zhi; 2000 Oct; 18(5):298-300. PubMed ID: 12539644 [TBL] [Abstract][Full Text] [Related]
10. Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories. Santillán D; Mosquera JC; Cueto-Felgueroso L Phys Rev E; 2017 Nov; 96(5-1):053002. PubMed ID: 29347739 [TBL] [Abstract][Full Text] [Related]
11. Designing molecular structure to achieve ductile fracture behavior in a stiff and strong 2D polymer, "graphylene". Sandoz-Rosado E; Beaudet TD; Balu R; Wetzel ED Nanoscale; 2016 Jun; 8(21):10947-55. PubMed ID: 26996950 [TBL] [Abstract][Full Text] [Related]
12. Effects of intracortical porosity on fracture toughness in aging human bone: a microCT-based cohesive finite element study. Ural A; Vashishth D J Biomech Eng; 2007 Oct; 129(5):625-31. PubMed ID: 17887887 [TBL] [Abstract][Full Text] [Related]
13. Relevance of rheological properties of gel beads for their mechanical stability in bioreactors. Martins Dos Santos VA; Leenen EJ; Rippoll MM; van der Sluis C; van Vliet T; Tramper J; Wijffels RH Biotechnol Bioeng; 1997 Dec; 56(5):517-29. PubMed ID: 18642272 [TBL] [Abstract][Full Text] [Related]
20. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling. Demirtas A; Curran E; Ural A Bone; 2016 Oct; 91():92-101. PubMed ID: 27451083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]