BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2808450)

  • 1. Computer simulation of blood flow in the human arm.
    Balar SD; Rogge TR; Young DF
    J Biomech; 1989; 22(6-7):691-7. PubMed ID: 2808450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of arterial flow with applications to arterial and aortic stenoses.
    Stergiopulos N; Young DF; Rogge TR
    J Biomech; 1992 Dec; 25(12):1477-88. PubMed ID: 1491023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro hemodynamic model of the arm arteriovenous circulation to study hemodynamics of native arteriovenous fistula and the distal revascularization and interval ligation procedure.
    Varble N; Day S; Phillips D; Mix D; Schwarz K; Illig KA; Chandra A
    J Vasc Surg; 2014 May; 59(5):1410-7. PubMed ID: 23845661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simplified distributed-parameter model of brachial-radial arteries for noninvasive determination of mechanical characteristics of vessel.
    Ferreira AS; Filho JB; Souza MN
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1814-7. PubMed ID: 17945669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The noninvasive estimation of central aortic blood pressure in patients with aortic stenosis.
    Rajani R; Chowienczyk P; Redwood S; Guilcher A; Chambers JB
    J Hypertens; 2008 Dec; 26(12):2381-8. PubMed ID: 19008716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model.
    Kim HJ; Vignon-Clementel IE; Figueroa CA; LaDisa JF; Jansen KE; Feinstein JA; Taylor CA
    Ann Biomed Eng; 2009 Nov; 37(11):2153-69. PubMed ID: 19609676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simplified computer model of cardiovascular system with an arm branch.
    Chen B; Song T; Guo T; Xiang H; Liu Y; Qin Y; Cao Z; Yu M
    Biomed Mater Eng; 2014; 24(6):2555-61. PubMed ID: 25226957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of vascular bed compliance in vasomotor control in human skeletal muscle.
    Zamir M; Goswami R; Salzer D; Shoemaker JK
    Exp Physiol; 2007 Sep; 92(5):841-8. PubMed ID: 17545216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model for blood flow through an arterial bifurcation.
    Tandon PN; Kawahara M; Rana UV
    Int J Biomed Comput; 1994 May; 35(4):309-25. PubMed ID: 8063457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study for blood rheology inside an artery: The effects of stenosis and radius on the flow behavior.
    Foong LK; Zarringhalam M; Toghraie D; Izadpanahi N; Yan SR; Rostami S
    Comput Methods Programs Biomed; 2020 Sep; 193():105457. PubMed ID: 32283389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arterial pressure transfer characteristics: effects of travel time.
    Westerhof BE; Guelen I; Stok WJ; Wesseling KH; Spaan JA; Westerhof N; Bos WJ; Stergiopulos N
    Am J Physiol Heart Circ Physiol; 2007 Feb; 292(2):H800-7. PubMed ID: 16963619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.
    Lowe A; Harrison W; El-Aklouk E; Ruygrok P; Al-Jumaily AM
    J Biomech; 2009 Sep; 42(13):2111-5. PubMed ID: 19665136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure wave propagation in a multibranched model of the human upper limb.
    Karamanoglu M; Gallagher DE; Avolio AP; O'Rourke MF
    Am J Physiol; 1995 Oct; 269(4 Pt 2):H1363-9. PubMed ID: 7485569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic consequences of cerebral vasospasm on perforating arteries: a phantom model study.
    Soustiel JF; Levy E; Bibi R; Lukaschuk S; Manor D
    Stroke; 2001 Mar; 32(3):629-35. PubMed ID: 11239178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic factors changing blood flow velocity waveform and profile in normal human brachial artery.
    Baccelli G; Pignoli P; Corbellini E; Pizzolati PL; Bassini M; Longo T; Zanchetti A
    Angiology; 1985 Jan; 36(1):1-8. PubMed ID: 4025916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-assisted modeling of blood-flow: theoretical evidence for the existence of optimal flow wave patterns.
    Schwartz LB; Purut CM; Craig DM; Smith PK; McCann RL
    Comput Biol Med; 1993 Mar; 23(2):83-93. PubMed ID: 8513669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Design and adjustment of a hydrodynamic model of turbulent flow separation area for in vitro experiment on the downstream of tubal stenosis].
    Guo Y; Shi Y; Xue W; Lin K; Liu S; Zhang J; Meng W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb; 22(1):38-42. PubMed ID: 15762111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fluid--structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery.
    Bathe M; Kamm RD
    J Biomech Eng; 1999 Aug; 121(4):361-9. PubMed ID: 10464689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical analysis of non-Newtonian blood flow in stenosis narrow arteries.
    Sriyab S
    Comput Math Methods Med; 2014; 2014():479152. PubMed ID: 25587350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.