These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28084592)

  • 1. Maternal Hypermethioninemia Affects Neurons Number, Neurotrophins Levels, Energy Metabolism, and Na
    Schweinberger BM; Rodrigues AF; Turcatel E; Pierozan P; Pettenuzzo LF; Grings M; Scaini G; Parisi MM; Leipnitz G; Streck EL; Barbé-Tuana FM; Wyse ATS
    Mol Neurobiol; 2018 Feb; 55(2):980-988. PubMed ID: 28084592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an animal model for gestational hypermethioninemia in rat and its effect on brain Na⁺,K⁺-ATPase/Mg²⁺-ATPase activity and oxidative status of the offspring.
    Schweinberger BM; Schwieder L; Scherer E; Sitta A; Vargas CR; Wyse AT
    Metab Brain Dis; 2014 Mar; 29(1):153-60. PubMed ID: 24248636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methionine Administration in Pregnant Rats Causes Memory Deficit in the Offspring and Alters Ultrastructure in Brain Tissue.
    Schweinberger BM; Rodrigues AF; Dos Santos TM; Rohden F; Barbosa S; da Luz Soster PR; Partata WA; Faccioni-Heuser MC; Wyse ATS
    Neurotox Res; 2018 Feb; 33(2):239-246. PubMed ID: 29086391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neuroprotective role of melatonin in a gestational hypermethioninemia model.
    Figueiró PW; Moreira DS; Dos Santos TM; Prezzi CA; Rohden F; Faccioni-Heuser MC; Manfredini V; Netto CA; Wyse ATS
    Int J Dev Neurosci; 2019 Nov; 78():198-209. PubMed ID: 31476364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hypermethioninemia on some parameters of oxidative stress and on Na(+),K (+)-ATPase activity in hippocampus of rats.
    Stefanello FM; Scherer EB; Kurek AG; Mattos CB; Wyse AT
    Metab Brain Dis; 2007 Jun; 22(2):172-82. PubMed ID: 17473966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic basis of hypermethioninemia.
    Schweinberger BM; Wyse AT
    Amino Acids; 2016 Nov; 48(11):2479-2489. PubMed ID: 27465642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypermethioninemia induces memory deficits and morphological changes in hippocampus of young rats: implications on pathogenesis.
    Soares MSP; de Mattos BDS; de Souza AÁ; Spohr L; Tavares RG; Siebert C; Moreira DS; Wyse ATS; Carvalho FB; Rahmeier F; Fernandes MDC; Stefanello FM; Spanevello RM
    Amino Acids; 2020 Mar; 52(3):371-385. PubMed ID: 31902007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute and chronic hypermethioninemia alter Na+ K+-ATPase activity in rat hippocampus: prevention by antioxidants.
    Stefanello FM; Ferreira AG; Pereira TC; da Cunha MJ; Bonan CD; Bogo MR; Wyse AT
    Int J Dev Neurosci; 2011 Jun; 29(4):483-8. PubMed ID: 21354298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tannic acid: A possible therapeutic agent for hypermethioninemia-induced neurochemical changes in young rats.
    Meine BM; de Mello JE; Custódio SV; da Silveira LM; Simões WS; Bona NP; Garcia DN; Schneider A; de Souza LP; Domingues WB; Campos VF; Spanevello RM; de Aguiar MSS; Stefanello FM
    Biochem Biophys Res Commun; 2024 Nov; 734():150635. PubMed ID: 39236587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic administration of methionine and/or methionine sulfoxide alters oxidative stress parameters and ALA-D activity in liver and kidney of young rats.
    Soares MS; Oliveira PS; Debom GN; da Silveira Mattos B; Polachini CR; Baldissarelli J; Morsch VM; Schetinger MR; Tavares RG; Stefanello FM; Spanevello RM
    Amino Acids; 2017 Jan; 49(1):129-138. PubMed ID: 27718024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ameliorative effect of tannic acid on hypermethioninemia-induced oxidative and nitrosative damage in rats: biochemical-based evidences in liver, kidney, brain, and serum.
    de Moraes Meine B; Bona NP; Luduvico KP; de Souza Cardoso J; Spohr L; de Souza AÁ; Spanevello RM; Soares MSP; Stefanello FM
    Amino Acids; 2020 Dec; 52(11-12):1545-1558. PubMed ID: 33184691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Severe Hyperhomocysteinemia Decreases Respiratory Enzyme and Na(+)-K(+) ATPase Activities, and Leads to Mitochondrial Alterations in Rat Amygdala.
    Kolling J; Scherer EB; Siebert C; Longoni A; Loureiro S; Weis S; Petenuzzo L; Wyse AT
    Neurotox Res; 2016 Apr; 29(3):408-18. PubMed ID: 26694914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gestational hypermethioninaemia alters oxidative/nitrative status in skeletal muscle and biomarkers of muscular injury and inflammation in serum of rat offspring.
    Schweinberger BM; Turcatel E; Rodrigues AF; Wyse AT
    Int J Exp Pathol; 2015 Oct; 96(5):277-84. PubMed ID: 26303039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute hypermethioninemia impairs redox homeostasis and acetylcholinesterase activity in the hippocampus, striatum, and cerebellum of young rats.
    de Moraes Meine B; Bona NP; Luduvico KP; Spohr L; Pedra NS; Spanevello RM; Stefanello FM; Sandrielly Pereira Soares M
    Int J Dev Neurosci; 2021 May; 81(3):285-289. PubMed ID: 33606291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of gangliosides, phospholipids and cholesterol content in cerebral cortex of rats caused by chronic hypermethioninemia.
    Stefanello FM; Kreutz F; Scherer EB; Breier AC; Vianna LP; Trindade VM; Wyse AT
    Int J Dev Neurosci; 2007 Nov; 25(7):473-7. PubMed ID: 17890041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gestational folic acid supplementation does not affects the maternal behavior and the early development of rats submitted to neonatal hypoxia-ischemia but the high supplementation impairs the dam's memory and the Na
    Deniz BF; Confortim HD; Deckmann I; Miguel PM; Bronauth L; de Oliveira BC; Vieira MC; Dos Santos TM; Bertó CG; Hartwig J; Wyse ÂTS; Pereira LO
    Int J Dev Neurosci; 2018 Dec; 71():181-192. PubMed ID: 30315904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Na(+),K(+)-ATPase in the hypothalamus, pons and cerebellum of the offspring rat due to experimentally-induced maternal hypothyroidism.
    Koromilas C; Liapi C; Zarros A; Tsela S; Zissis KM; Kalafatakis K; Skandali N; Voumvourakis K; Carageorgiou H; Tsakiris S
    J Matern Fetal Neonatal Med; 2015 Aug; 28(12):1438-44. PubMed ID: 25123521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marked reduction of Na(+), K(+)-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice.
    Amaral AU; Cecatto C; Seminotti B; Zanatta Â; Fernandes CG; Busanello EN; Braga LM; Ribeiro CA; de Souza DO; Woontner M; Koeller DM; Goodman S; Wajner M
    Mol Genet Metab; 2012 Sep; 107(1-2):81-6. PubMed ID: 22578804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of the pre-treatment of intravenous nimodipine on Na(+)-K+/Mg+2 ATPase, Ca+2/Mg+2 ATPase, lipid peroxidation and early ultrastructural findings following middle cerebral artery occlusion in the rat.
    Ildan F; Göçer AI; Tuna M; Polat S; Kaya M; Isbir T; Cetinalp E
    Neurol Res; 2001 Jan; 23(1):96-104. PubMed ID: 11210440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disturbance of energy and redox homeostasis and reduction of Na+,K+-ATPase activity provoked by in vivo intracerebral administration of ethylmalonic acid to young rats.
    Ritter L; Kleemann D; Hickmann FH; Amaral AU; Sitta Â; Wajner M; Ribeiro CA
    Biochim Biophys Acta; 2015 May; 1852(5):759-67. PubMed ID: 25583115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.