These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28084716)

  • 1. Manipulation of Optoelectronic Properties and Band Structure Engineering of Ultrathin Te Nanowires by Chemical Adsorption.
    Roy A; Amin KR; Tripathi S; Biswas S; Singh AK; Bid A; Ravishankar N
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19462-19469. PubMed ID: 28084716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Networks of semiconducting SWNTs: contribution of midgap electronic states to the electrical transport.
    Itkis ME; Pekker A; Tian X; Bekyarova E; Haddon RC
    Acc Chem Res; 2015 Aug; 48(8):2270-9. PubMed ID: 26244611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Zn
    Yong Y; Su X; Zhou Q; Kuang Y; Li X
    Sci Rep; 2017 Dec; 7(1):17505. PubMed ID: 29235489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Adsorption of NH
    Raya SS; Ansari AS; Shong B
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32580390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cluster-assembled nanowires based on M12N12 (M = Al and Ga) clusters as potential gas sensors for CO, NO, and NO2 detection.
    Yong Y; Jiang H; Li X; Lv S; Cao J
    Phys Chem Chem Phys; 2016 Aug; 18(31):21431-41. PubMed ID: 27424739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic and electronic structures evolution of the narrow band gap semiconductor Ag2Se under high pressure.
    Naumov P; Barkalov O; Mirhosseini H; Felser C; Medvedev SA
    J Phys Condens Matter; 2016 Sep; 28(38):385801. PubMed ID: 27439023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid-gated ambipolar transport in ultrathin films of a topological insulator Bi2Te3.
    Yuan H; Liu H; Shimotani H; Guo H; Chen M; Xue Q; Iwasa Y
    Nano Lett; 2011 Jul; 11(7):2601-5. PubMed ID: 21696167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-area ultrathin Te films with substrate-tunable orientation.
    Bianco E; Rao R; Snure M; Back T; Glavin NR; McConney ME; Ajayan PM; Ringe E
    Nanoscale; 2020 Jun; 12(23):12613-12622. PubMed ID: 32510097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designed Quasi-1D Potential Structures Realized in Compositionally Graded InAs1-xPx Nanowires.
    Nylund G; Storm K; Lehmann S; Capasso F; Samuelson L
    Nano Lett; 2016 Feb; 16(2):1017-21. PubMed ID: 26788886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity.
    Liu JW; Zhu JH; Zhang CL; Liang HW; Yu SH
    J Am Chem Soc; 2010 Jul; 132(26):8945-52. PubMed ID: 20545345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersibility, stabilization, and chemical stability of ultrathin tellurium nanowires in acetone: morphology change, crystallization, and transformation into TeO2 in different solvents.
    Lan WJ; Yu SH; Qian HS; Wan Y
    Langmuir; 2007 Mar; 23(6):3409-17. PubMed ID: 17295530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic and magnetic properties of pristine and transition metal doped ZnTe nanowires.
    Mukherjee P; Gupta BC; Jena P
    J Phys Condens Matter; 2013 Jul; 25(26):266003. PubMed ID: 23756471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Flexibility and Alloying in Ultrathin Transition-Metal Chalcogenide Nanowires.
    Lin J; Zhang Y; Zhou W; Pantelides ST
    ACS Nano; 2016 Feb; 10(2):2782-90. PubMed ID: 26775676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation effects in morphology and electronic properties of anatase TiO(2) one-dimensional nanostructures. I. Nanowires.
    Migas DB; Filonov AB; Borisenko VE; Skorodumova NV
    Phys Chem Chem Phys; 2014 May; 16(20):9479-89. PubMed ID: 24724155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors.
    Kisner A; Heggen M; Mayer D; Simon U; Offenhäusser A; Mourzina Y
    Nanoscale; 2014 May; 6(10):5146-55. PubMed ID: 24589626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competition of Photo-Excitation and Photo-Desorption Induced Positive and Negative Photoconductivity Switch in Te Nanowires.
    Yin Y; Ling J; Wang L; Zhou W; Peng Y; Zhou Y; Tang D
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sn-doped bismuth telluride nanowires with high conductivity.
    Mi G; Li L; Zhang Y; Zheng G
    Nanoscale; 2012 Oct; 4(20):6276-8. PubMed ID: 22990308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic properties of bare and functionalized two-dimensional (2D) tellurene structures.
    Wines D; Kropp JA; Chaney G; Ersan F; Ataca C
    Phys Chem Chem Phys; 2020 Mar; 22(12):6727-6737. PubMed ID: 32166303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain tuning of electronic properties of various dimension elemental tellurium with broken screw symmetry.
    Xue XX; Feng YX; Liao L; Chen QJ; Wang D; Tang LM; Chen K
    J Phys Condens Matter; 2018 Mar; 30(12):125001. PubMed ID: 29485101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.