These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 28084746)
1. Experimental Realization of a Thermal Squeezed State of Levitated Optomechanics. Rashid M; Tufarelli T; Bateman J; Vovrosh J; Hempston D; Kim MS; Ulbricht H Phys Rev Lett; 2016 Dec; 117(27):273601. PubMed ID: 28084746 [TBL] [Abstract][Full Text] [Related]
2. Mechanical Squeezing via Unstable Dynamics in a Microcavity. Kustura K; Gonzalez-Ballestero C; Sommer ALR; Meyer N; Quidant R; Romero-Isart O Phys Rev Lett; 2022 Apr; 128(14):143601. PubMed ID: 35476467 [TBL] [Abstract][Full Text] [Related]
3. Quantum control of a nanoparticle optically levitated in cryogenic free space. Tebbenjohanns F; Mattana ML; Rossi M; Frimmer M; Novotny L Nature; 2021 Jul; 595(7867):378-382. PubMed ID: 34262214 [TBL] [Abstract][Full Text] [Related]
4. QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator. Wollman EE; Lei CU; Weinstein AJ; Suh J; Kronwald A; Marquardt F; Clerk AA; Schwab KC Science; 2015 Aug; 349(6251):952-5. PubMed ID: 26315431 [TBL] [Abstract][Full Text] [Related]
5. Torsional Optomechanics of a Levitated Nonspherical Nanoparticle. Hoang TM; Ma Y; Ahn J; Bang J; Robicheaux F; Yin ZQ; Li T Phys Rev Lett; 2016 Sep; 117(12):123604. PubMed ID: 27689273 [TBL] [Abstract][Full Text] [Related]
6. Cooling of a levitated nanoparticle to the motional quantum ground state. Delić U; Reisenbauer M; Dare K; Grass D; Vuletić V; Kiesel N; Aspelmeyer M Science; 2020 Feb; 367(6480):892-895. PubMed ID: 32001522 [TBL] [Abstract][Full Text] [Related]
7. Squeezing a thermal mechanical oscillator by stabilized parametric effect on the optical spring. Pontin A; Bonaldi M; Borrielli A; Cataliotti FS; Marino F; Prodi GA; Serra E; Marin F Phys Rev Lett; 2014 Jan; 112(2):023601. PubMed ID: 24484010 [TBL] [Abstract][Full Text] [Related]
8. Cavity opto-mechanics using an optically levitated nanosphere. Chang DE; Regal CA; Papp SB; Wilson DJ; Ye J; Painter O; Kimble HJ; Zoller P Proc Natl Acad Sci U S A; 2010 Jan; 107(3):1005-10. PubMed ID: 20080573 [TBL] [Abstract][Full Text] [Related]
9. Cavity cooling of an optically levitated submicron particle. Kiesel N; Blaser F; Delić U; Grass D; Kaltenbaek R; Aspelmeyer M Proc Natl Acad Sci U S A; 2013 Aug; 110(35):14180-5. PubMed ID: 23940352 [TBL] [Abstract][Full Text] [Related]
10. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir. Singh V; Müstecaplıoğlu ÖE Phys Rev E; 2020 Dec; 102(6-1):062123. PubMed ID: 33466082 [TBL] [Abstract][Full Text] [Related]
11. Heralded Control of Mechanical Motion by Single Spins. Rao DD; Momenzadeh SA; Wrachtrup J Phys Rev Lett; 2016 Aug; 117(7):077203. PubMed ID: 27563995 [TBL] [Abstract][Full Text] [Related]
13. Motional Sideband Asymmetry of a Nanoparticle Optically Levitated in Free Space. Tebbenjohanns F; Frimmer M; Jain V; Windey D; Novotny L Phys Rev Lett; 2020 Jan; 124(1):013603. PubMed ID: 31976693 [TBL] [Abstract][Full Text] [Related]
14. Cooling-by-measurement and mechanical state tomography via pulsed optomechanics. Vanner MR; Hofer J; Cole GD; Aspelmeyer M Nat Commun; 2013; 4():2295. PubMed ID: 23945768 [TBL] [Abstract][Full Text] [Related]
15. High-fidelity heralded quantum squeezing gate based on entanglement. Liu K; Li J; Yang R; Zhai S Opt Express; 2020 Aug; 28(16):23628-23639. PubMed ID: 32752356 [TBL] [Abstract][Full Text] [Related]
16. Laser Cooling of a Nanomechanical Oscillator to Its Zero-Point Energy. Qiu L; Shomroni I; Seidler P; Kippenberg TJ Phys Rev Lett; 2020 May; 124(17):173601. PubMed ID: 32412282 [TBL] [Abstract][Full Text] [Related]
17. Matter-wave interferometry of a levitated thermal nano-oscillator induced and probed by a spin. Scala M; Kim MS; Morley GW; Barker PF; Bose S Phys Rev Lett; 2013 Nov; 111(18):180403. PubMed ID: 24237492 [TBL] [Abstract][Full Text] [Related]
19. Quantum benchmark for teleportation and storage of squeezed states. Adesso G; Chiribella G Phys Rev Lett; 2008 May; 100(17):170503. PubMed ID: 18518264 [TBL] [Abstract][Full Text] [Related]
20. Dissipative bosonic squeezing via frequency modulation and its application in optomechanics. Wang DY; Bai CH; Liu S; Zhang S; Wang HF Opt Express; 2020 Sep; 28(20):28942-28953. PubMed ID: 33114802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]