These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28084748)

  • 1. Tapered Glass-Fiber Microspike: High-Q Flexural Wave Resonator and Optically Driven Knudsen Pump.
    Pennetta R; Xie S; Russell PS
    Phys Rev Lett; 2016 Dec; 117(27):273901. PubMed ID: 28084748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat.
    Rivière R; Arcizet O; Schliesser A; Kippenberg TJ
    Rev Sci Instrum; 2013 Apr; 84(4):043108. PubMed ID: 23635182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room-Temperature Pressure-Induced Optically-Actuated Fabry-Perot Nanomechanical Resonator with Multilayer Graphene Diaphragm in Air.
    Li C; Lan T; Yu X; Bo N; Dong J; Fan S
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29113035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic wave flow sensor using quartz thickness shear mode resonator.
    Qin L; Zeng Z; Cheng H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1945-54. PubMed ID: 19811997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waveguide-integrated chip-scale optomechanical magnetometer.
    Gotardo F; Carey BJ; Greenall H; Harris GI; Romero E; Bulla D; Bridge EM; Bennett JS; Foster S; Bowen WP
    Opt Express; 2023 Nov; 31(23):37663-37672. PubMed ID: 38017892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Viscous Air Damping on an Optically Actuated Multilayer MoS₂ Nanomechanical Resonator Using Fabry-Perot Interference.
    She Y; Li C; Lan T; Peng X; Liu Q; Fan S
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A broadband and low-power light-control-light effect in a fiber-optic nano-optomechanical system.
    Zhang Y; Zhu W; Fan P; He Y; Zhuo L; Che Z; Li D; Zheng H; Dong L; Tang J; Qiu W; Zhang J; Zhong Y; Yu J; Chen Z
    Nanoscale; 2020 May; 12(17):9800-9809. PubMed ID: 32328601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin-optomechanical coupling between light and a nanofiber torsional mode.
    Fenton EF; Khan A; Solano P; Orozco LA; Fatemi FK
    Opt Lett; 2018 Apr; 43(7):1534-1537. PubMed ID: 29601023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Sensitive Hydrogen Sensor Based on an Optical Driven Nanofilm Resonator.
    Luo J; Liu S; Chen P; Chen Y; Zhong J; Wang Y
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):29357-29365. PubMed ID: 35704433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical and Electrical Method Characterizing the Dynamic Behavior of the Fused Silica Cylindrical Resonator.
    Qiu Z; Qu T; Pan Y; Jia Y; Fan Z; Yang K; Yuan J; Luo H
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31269769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sub-pg mass sensing and measurement with an optomechanical oscillator.
    Liu F; Alaie S; Leseman ZC; Hossein-Zadeh M
    Opt Express; 2013 Aug; 21(17):19555-67. PubMed ID: 24105503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically driven resonance of nanoscale flexural oscillators in liquid.
    Verbridge SS; Bellan LM; Parpia JM; Craighead HG
    Nano Lett; 2006 Sep; 6(9):2109-14. PubMed ID: 16968035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optomechanical nonlinearity enhanced optical sensors.
    Fan J; Huang C; Zhu L
    Opt Express; 2015 Feb; 23(3):2973-81. PubMed ID: 25836157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a femtogram scale double-slot photonic crystal optomechanical cavity.
    Zhang H; Zhang Y; Gao G; Zhao X; Wang Y; Huang Q; Yu J; Xia J
    Opt Express; 2015 Sep; 23(18):23167-76. PubMed ID: 26368419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical side-band cooling of a low frequency optomechanical system.
    Eerkens HJ; Buters FM; Weaver MJ; Pepper B; Welker G; Heeck K; Sonin P; de Man S; Bouwmeester D
    Opt Express; 2015 Mar; 23(6):8014-20. PubMed ID: 25837139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance-mode effect on microcantilever mass-sensing performance in air.
    Xia X; Li X
    Rev Sci Instrum; 2008 Jul; 79(7):074301. PubMed ID: 18681721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical traps and anti-traps for glass nanoplates in hollow waveguides.
    Günendi MC; Xie S; Novoa D; Russell PS
    Opt Express; 2019 Jun; 27(13):17708-17717. PubMed ID: 31252727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adiabatically tapered microstructured mode converter for selective excitation of the fundamental mode in a few mode fiber.
    Taher AB; Di Bin P; Bahloul F; Tartaret-Josnière E; Jossent M; Février S; Attia R
    Opt Express; 2016 Jan; 24(2):1376-85. PubMed ID: 26832518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tapered waveguides for guided wave optics.
    Campbell JC
    Appl Opt; 1979 Mar; 18(6):900-2. PubMed ID: 20208841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotube mechanical resonators with quality factors of up to 5 million.
    Moser J; Eichler A; Güttinger J; Dykman MI; Bachtold A
    Nat Nanotechnol; 2014 Dec; 9(12):1007-11. PubMed ID: 25344688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.