These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28084751)

  • 21. Optimal harmonic response in a confined Bödewadt boundary layer flow.
    Do Y; Lopez JM; Marques F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036301. PubMed ID: 21230165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental Fock-State Superradiance.
    Ortiz-Gutiérrez L; Muñoz-Martínez LF; Barros DF; Morales JEO; Moreira RSN; Alves ND; Tieco AFG; Saldanha PL; Felinto D
    Phys Rev Lett; 2018 Feb; 120(8):083603. PubMed ID: 29543025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling microflow and stirring around a microrotor in creeping flow using a quasi-steady-state analysis.
    Vuppu AK; Garcia AA; Saha SK; Phelan PE; Hayes MA; Calhoun R
    Lab Chip; 2004 Jun; 4(3):201-8. PubMed ID: 15159779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Q-Ball Superradiance.
    Saffin PM; Xie QX; Zhou SY
    Phys Rev Lett; 2023 Sep; 131(11):111601. PubMed ID: 37774310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamical Formation of Kerr Black Holes with Synchronized Hair: An Analytic Model.
    Herdeiro CAR; Radu E
    Phys Rev Lett; 2017 Dec; 119(26):261101. PubMed ID: 29328736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental lateral wall boundary layer behavior of a differentially rotating split-cylinder flow.
    Rodríguez-García JO; Burguete J
    Phys Rev E; 2019 Feb; 99(2-1):023111. PubMed ID: 30934330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapidly rotating cylinder flow with an oscillating sidewall.
    Lopez JM; Marques F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013013. PubMed ID: 24580326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime.
    Araújo MO; Krešić I; Kaiser R; Guerin W
    Phys Rev Lett; 2016 Aug; 117(7):073002. PubMed ID: 27563957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superradiant rayleigh scattering and collective atomic recoil lasing in a ring cavity.
    Slama S; Bux S; Krenz G; Zimmermann C; Courteille PW
    Phys Rev Lett; 2007 Feb; 98(5):053603. PubMed ID: 17358857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-Photon Superradiance from a Quantum Dot.
    Tighineanu P; Daveau RS; Lehmann TB; Beere HE; Ritchie DA; Lodahl P; Stobbe S
    Phys Rev Lett; 2016 Apr; 116(16):163604. PubMed ID: 27152804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vortex-induced morphology on a two-fluid interface and the transitions.
    Tsai JC; Tao CY; Sun YC; Lai CY; Huang KH; Juan WT; Huang JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):031002. PubMed ID: 26465415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zel'dovich Amplification in a Superconducting Circuit.
    Braidotti MC; Vinante A; Gasbarri G; Faccio D; Ulbricht H
    Phys Rev Lett; 2020 Oct; 125(14):140801. PubMed ID: 33064533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collective Lamb shift in single-photon superradiance.
    Röhlsberger R; Schlage K; Sahoo B; Couet S; Rüffer R
    Science; 2010 Jun; 328(5983):1248-51. PubMed ID: 20466883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superradiance Induced Particle Flow via Dynamical Gauge Coupling.
    Zheng W; Cooper NR
    Phys Rev Lett; 2016 Oct; 117(17):175302. PubMed ID: 27824448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Instabilities of conducting fluid layers in weak time-dependent magnetic fields.
    Cortés-Domínguez I; Burguete J
    Phys Rev E; 2017 Jul; 96(1-1):013103. PubMed ID: 29347070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tailoring superradiance to design artificial quantum systems.
    Longo P; Keitel CH; Evers J
    Sci Rep; 2016 Mar; 6():23628. PubMed ID: 27009604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linear and nonlinear instabilities in rotating cylindrical Rayleigh-Bénard convection.
    Li L; Liao X; Chan KH; Zhang K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056303. PubMed ID: 19113212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-fluid confined flow in a cylinder driven by a rotating end wall.
    Brady PT; Herrmann M; Lopez JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016308. PubMed ID: 22400659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of a microcarrier particle in the simulated microgravity environment of a rotating-wall vessel.
    Gao H; Ayyaswamy PS; Ducheyne P
    Microgravity Sci Technol; 1997; 10(3):154-65. PubMed ID: 11543416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extraction of black hole rotational energy by a magnetic field and the formation of relativistic jets.
    Koide S; Shibata K; Kudoh T; Meier DL
    Science; 2002 Mar; 295(5560):1688-91. PubMed ID: 11809939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.