BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 28084991)

  • 1. Reward-based training of recurrent neural networks for cognitive and value-based tasks.
    Song HF; Yang GR; Wang XJ
    Elife; 2017 Jan; 6():. PubMed ID: 28084991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of reinforcement learning and decision making in the primate dorsolateral prefrontal cortex.
    Lee D; Seo H
    Ann N Y Acad Sci; 2007 May; 1104():108-22. PubMed ID: 17347332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emphasizing the "positive" in positive reinforcement: using nonbinary rewarding for training monkeys on cognitive tasks.
    Fischer B; Wegener D
    J Neurophysiol; 2018 Jul; 120(1):115-128. PubMed ID: 29617217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks.
    Ehrlich DB; Stone JT; Brandfonbrener D; Atanasov A; Murray JD
    eNeuro; 2021; 8(1):. PubMed ID: 33328247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.
    Song HF; Yang GR; Wang XJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004792. PubMed ID: 26928718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Working Memory and Decision-Making in a Frontoparietal Circuit Model.
    Murray JD; Jaramillo J; Wang XJ
    J Neurosci; 2017 Dec; 37(50):12167-12186. PubMed ID: 29114071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Goal-Directed Decision Making with Spiking Neurons.
    Friedrich J; Lengyel M
    J Neurosci; 2016 Feb; 36(5):1529-46. PubMed ID: 26843636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The decision to engage cognitive control is driven by expected reward-value: neural and behavioral evidence.
    Dixon ML; Christoff K
    PLoS One; 2012; 7(12):e51637. PubMed ID: 23284730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reward Learning over Weeks Versus Minutes Increases the Neural Representation of Value in the Human Brain.
    Wimmer GE; Li JK; Gorgolewski KJ; Poldrack RA
    J Neurosci; 2018 Aug; 38(35):7649-7666. PubMed ID: 30061189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural basis of reinforcement learning and decision making.
    Lee D; Seo H; Jung MW
    Annu Rev Neurosci; 2012; 35():287-308. PubMed ID: 22462543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.
    Miconi T
    Elife; 2017 Feb; 6():. PubMed ID: 28230528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Episodic memory governs choices: An RNN-based reinforcement learning model for decision-making task.
    Zhang X; Liu L; Long G; Jiang J; Liu S
    Neural Netw; 2021 Feb; 134():1-10. PubMed ID: 33276194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A recurrent neural network framework for flexible and adaptive decision making based on sequence learning.
    Zhang Z; Cheng H; Yang T
    PLoS Comput Biol; 2020 Nov; 16(11):e1008342. PubMed ID: 33141824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic signals related to choices and outcomes in the dorsolateral prefrontal cortex.
    Seo H; Barraclough DJ; Lee D
    Cereb Cortex; 2007 Sep; 17 Suppl 1():i110-7. PubMed ID: 17548802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlates of reward-predictive value in learning-related hippocampal neural activity.
    Okatan M
    Hippocampus; 2009 May; 19(5):487-506. PubMed ID: 19123250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural Signatures of Value Comparison in Human Cingulate Cortex during Decisions Requiring an Effort-Reward Trade-off.
    Klein-Flügge MC; Kennerley SW; Friston K; Bestmann S
    J Neurosci; 2016 Sep; 36(39):10002-15. PubMed ID: 27683898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of value-based decision making behavior by subregions of the rat prefrontal cortex.
    Verharen JPH; den Ouden HEM; Adan RAH; Vanderschuren LJMJ
    Psychopharmacology (Berl); 2020 May; 237(5):1267-1280. PubMed ID: 32025777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.