BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 28084991)

  • 21. Modulation of value-based decision making behavior by subregions of the rat prefrontal cortex.
    Verharen JPH; den Ouden HEM; Adan RAH; Vanderschuren LJMJ
    Psychopharmacology (Berl); 2020 May; 237(5):1267-1280. PubMed ID: 32025777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Goal-directed decision making as probabilistic inference: a computational framework and potential neural correlates.
    Solway A; Botvinick MM
    Psychol Rev; 2012 Jan; 119(1):120-54. PubMed ID: 22229491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the violation of reward maximization and invariance in reinforcement schedules.
    La Camera G; Richmond BJ
    PLoS Comput Biol; 2008 Aug; 4(8):e1000131. PubMed ID: 18688266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A neural network model for the orbitofrontal cortex and task space acquisition during reinforcement learning.
    Zhang Z; Cheng Z; Lin Z; Nie C; Yang T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005925. PubMed ID: 29300746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Value representations in the rodent orbitofrontal cortex drive learning, not choice.
    Miller KJ; Botvinick MM; Brody CD
    Elife; 2022 Aug; 11():. PubMed ID: 35975792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuronal Reward and Decision Signals: From Theories to Data.
    Schultz W
    Physiol Rev; 2015 Jul; 95(3):853-951. PubMed ID: 26109341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional connectivity between anterior cingulate cortex and orbitofrontal cortex during value-based decision making.
    Fatahi Z; Haghparast A; Khani A; Kermani M
    Neurobiol Learn Mem; 2018 Jan; 147():74-78. PubMed ID: 29191756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Policy adjustment in a dynamic economic game.
    Li J; McClure SM; King-Casas B; Montague PR
    PLoS One; 2006 Dec; 1(1):e103. PubMed ID: 17183636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making.
    Sul JH; Kim H; Huh N; Lee D; Jung MW
    Neuron; 2010 May; 66(3):449-60. PubMed ID: 20471357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making.
    Schönberg T; Daw ND; Joel D; O'Doherty JP
    J Neurosci; 2007 Nov; 27(47):12860-7. PubMed ID: 18032658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Counterfactual choice and learning in a neural network centered on human lateral frontopolar cortex.
    Boorman ED; Behrens TE; Rushworth MF
    PLoS Biol; 2011 Jun; 9(6):e1001093. PubMed ID: 21738446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adversarial vulnerabilities of human decision-making.
    Dezfouli A; Nock R; Dayan P
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):29221-29228. PubMed ID: 33148802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Individual Neurons in the Cingulate Cortex Encode Action Monitoring, Not Selection, during Adaptive Decision-Making.
    Li YS; Nassar MR; Kable JW; Gold JI
    J Neurosci; 2019 Aug; 39(34):6668-6683. PubMed ID: 31217329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Task representations in neural networks trained to perform many cognitive tasks.
    Yang GR; Joglekar MR; Song HF; Newsome WT; Wang XJ
    Nat Neurosci; 2019 Feb; 22(2):297-306. PubMed ID: 30643294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-scale neural network computations and multivariate representations during approach-avoidance conflict decision-making.
    Moughrabi N; Botsford C; Gruichich TS; Azar A; Heilicher M; Hiser J; Crombie KM; Dunsmoor JE; Stowe Z; Cisler JM
    Neuroimage; 2022 Dec; 264():119709. PubMed ID: 36283543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning.
    Hoerzer GM; Legenstein R; Maass W
    Cereb Cortex; 2014 Mar; 24(3):677-90. PubMed ID: 23146969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Entropy-based metrics for predicting choice behavior based on local response to reward.
    Trepka E; Spitmaan M; Bari BA; Costa VD; Cohen JY; Soltani A
    Nat Commun; 2021 Nov; 12(1):6567. PubMed ID: 34772943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cognitive flexibility in adolescence: neural and behavioral mechanisms of reward prediction error processing in adaptive decision making during development.
    Hauser TU; Iannaccone R; Walitza S; Brandeis D; Brem S
    Neuroimage; 2015 Jan; 104():347-54. PubMed ID: 25234119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Neural mechanisms of decision making].
    Funahashi S
    Brain Nerve; 2008 Sep; 60(9):1017-27. PubMed ID: 18807936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.