These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 28085220)
1. Chemotype diversity in Planktothrix rubescens (cyanobacteria) populations is correlated to lake depth. Haruštiaková D; Welker M Environ Microbiol Rep; 2017 Apr; 9(2):158-168. PubMed ID: 28085220 [TBL] [Abstract][Full Text] [Related]
2. Lenard T; Poniewozik M Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429622 [TBL] [Abstract][Full Text] [Related]
3. Consistency between chemotyping of single filaments of Planktothrix rubescens (cyanobacteria) by MALDI-TOF and the peptide patterns of strains determined by HPLC-MS. Welker M; Erhard M J Mass Spectrom; 2007 Aug; 42(8):1062-8. PubMed ID: 17605146 [TBL] [Abstract][Full Text] [Related]
4. Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Kurmayer R; Christiansen G; Fastner J; Börner T Environ Microbiol; 2004 Aug; 6(8):831-41. PubMed ID: 15250885 [TBL] [Abstract][Full Text] [Related]
5. Cyanobacteria biennal dynamic in a volcanic mesotrophic lake in central Italy: Strategies to prevent dangerous human exposures to cyanotoxins. Manganelli M; Stefanelli M; Vichi S; Andreani P; Nascetti G; Scialanca F; Scardala S; Testai E; Funari E Toxicon; 2016 Jun; 115():28-40. PubMed ID: 26948426 [TBL] [Abstract][Full Text] [Related]
6. Presence of potential toxin-producing cyanobacteria in an oligo-mesotrophic lake in Baltic Lake District, Germany: an ecological, genetic and toxicological survey. Dadheech PK; Selmeczy GB; Vasas G; Padisák J; Arp W; Tapolczai K; Casper P; Krienitz L Toxins (Basel); 2014 Sep; 6(10):2912-31. PubMed ID: 25268981 [TBL] [Abstract][Full Text] [Related]
7. Diversity of coexisting Planktothrix (cyanobacteria) chemotypes deduced by mass spectral analysis of microystins and other oligopeptides. Welker M; Christiansen G; von Döhren H Arch Microbiol; 2004 Oct; 182(4):288-98. PubMed ID: 15322739 [TBL] [Abstract][Full Text] [Related]
8. Physiological stress and pathology in European whitefish (Coregonus lavaretus) induced by subchronic exposure to environmentally relevant densities of Planktothrix rubescens. Ernst B; Hoeger SJ; O'brien E; Dietrich DR Aquat Toxicol; 2007 Apr; 82(1):15-26. PubMed ID: 17320197 [TBL] [Abstract][Full Text] [Related]
9. Contrasting microcystin production and cyanobacterial population dynamics in two Planktothrix-dominated freshwater lakes. Janse I; Kardinaal WE; Agterveld MK; Meima M; Visser PM; Zwart G Environ Microbiol; 2005 Oct; 7(10):1514-24. PubMed ID: 16156725 [TBL] [Abstract][Full Text] [Related]
10. DISTRIBUTION OF OLIGOPEPTIDE CHEMOTYPES OF THE CYANOBACTERIUM PLANKTOTHRIX AND THEIR PERSISTENCE IN SELECTED LAKES IN FENNOSCANDIA(1). Rohrlack T; Skulberg R; Skulberg OM J Phycol; 2009 Dec; 45(6):1259-65. PubMed ID: 27032581 [TBL] [Abstract][Full Text] [Related]
11. Suboptimal light conditions negatively affect the heterotrophy of Planktothrix rubescens but are beneficial for accompanying Limnohabitans spp. Horňák K; Zeder M; Blom JF; Posch T; Pernthaler J Environ Microbiol; 2012 Mar; 14(3):765-78. PubMed ID: 22070761 [TBL] [Abstract][Full Text] [Related]
12. Experimental models of microcystin accumulation in Daphnia magna grazing on Planktothrix rubescens: implications for water management. Shams S; Cerasino L; Salmaso N; Dietrich DR Aquat Toxicol; 2014 Mar; 148():9-15. PubMed ID: 24440453 [TBL] [Abstract][Full Text] [Related]
13. Oral toxicity of the microcystin-containing cyanobacterium Planktothrix rubescens in European whitefish (Coregonus lavaretus). Ernst B; Hoeger SJ; O'Brien E; Dietrich DR Aquat Toxicol; 2006 Aug; 79(1):31-40. PubMed ID: 16806524 [TBL] [Abstract][Full Text] [Related]
14. Impact of internal waves on the spatial distribution of Planktothrix rubescens (cyanobacteria) in an alpine lake. Cuypers Y; Vinçon-Leite B; Groleau A; Tassin B; Humbert JF ISME J; 2011 Apr; 5(4):580-9. PubMed ID: 21085197 [TBL] [Abstract][Full Text] [Related]
15. Trophic transfer of microcystins through the lake pelagic food web: evidence for the role of zooplankton as a vector in fish contamination. Sotton B; Guillard J; Anneville O; Maréchal M; Savichtcheva O; Domaizon I Sci Total Environ; 2014 Jan; 466-467():152-63. PubMed ID: 23906853 [TBL] [Abstract][Full Text] [Related]
16. The Red Harmful Plague in Times of Climate Change: Blooms of the Cyanobacterium Knapp D; Fernández Castro B; Marty D; Loher E; Köster O; Wüest A; Posch T Front Microbiol; 2021; 12():705914. PubMed ID: 34512582 [No Abstract] [Full Text] [Related]
17. Planktic Tychonema (Cyanobacteria) in the large lakes south of the Alps: phylogenetic assessment and toxigenic potential. Salmaso N; Cerasino L; Boscaini A; Capelli C FEMS Microbiol Ecol; 2016 Oct; 92(10):. PubMed ID: 27402712 [TBL] [Abstract][Full Text] [Related]
18. Microcystin diversity in a Planktothrix rubescens population from Lake Albano (Central Italy). Messineo V; Mattei D; Melchiorre S; Salvatore G; Bogialli S; Salzano R; Mazza R; Capelli G; Bruno M Toxicon; 2006 Aug; 48(2):160-74. PubMed ID: 16828137 [TBL] [Abstract][Full Text] [Related]
19. Microcystin analysis in single filaments of Planktothrix spp. in laboratory cultures and environmental blooms. Akcaalan R; Young FM; Metcalf JS; Morrison LF; Albay M; Codd GA Water Res; 2006 May; 40(8):1583-90. PubMed ID: 16597454 [TBL] [Abstract][Full Text] [Related]
20. Is Toxin-Producing Fournier C; Riehle E; Dietrich DR; Schleheck D Toxins (Basel); 2021 Sep; 13(9):. PubMed ID: 34564670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]