These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 28085309)

  • 1. Regularity criterion for solutions of the three-dimensional Cahn-Hilliard-Navier-Stokes equations and associated computations.
    Gibbon JD; Pal N; Gupta A; Pandit R
    Phys Rev E; 2016 Dec; 94(6-1):063103. PubMed ID: 28085309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Publisher's Note: Regularity criterion for solutions of the three-dimensional Cahn-Hilliard-Navier-Stokes equations and associated computations [Phys. Rev. E 94, 063103 (2016)].
    Gibbon JD; Pal N; Gupta A; Pandit R
    Phys Rev E; 2017 Jan; 95(1-2):019902. PubMed ID: 28208364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.
    Vorobev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056312. PubMed ID: 21230581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional Turbulence in Symmetric Binary-Fluid Mixtures: Coarsening Arrest by the Inverse Cascade.
    Perlekar P; Pal N; Pandit R
    Sci Rep; 2017 Mar; 7():44589. PubMed ID: 28322219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between the Beale-Kato-Majda theorem and the analyticity-strip method to investigate numerically the incompressible Euler singularity problem.
    Bustamante MD; Brachet M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066302. PubMed ID: 23368033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel turbulence and coarsening arrest in active-scalar fluids.
    Padhan NB; Kiran KV; Pandit R
    Soft Matter; 2024 May; 20(17):3620-3627. PubMed ID: 38619449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy balance for forced two-dimensional incompressible ideal fluid flow.
    Lopes Filho MC; Nussenzveig Lopes HJ
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210095. PubMed ID: 35094564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient numerical approaches with accelerated graphics processing unit (GPU) computations for Poisson problems and Cahn-Hilliard equations.
    Orizaga S; Fabien M; Millard M
    AIMS Math; 2024; 9(10):27471-27496. PubMed ID: 39391269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binary-fluid turbulence: Signatures of multifractal droplet dynamics and dissipation reduction.
    Pal N; Perlekar P; Gupta A; Pandit R
    Phys Rev E; 2016 Jun; 93(6):063115. PubMed ID: 27415366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic derivation of Cahn-Hilliard fluid models.
    Giovangigli V
    Phys Rev E; 2021 Nov; 104(5-1):054109. PubMed ID: 34942763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-similarity in incompressible Navier-Stokes equations.
    Ercan A; Kavvas ML
    Chaos; 2015 Dec; 25(12):123126. PubMed ID: 26723165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-attenuation of extreme events in Navier-Stokes turbulence.
    Buaria D; Pumir A; Bodenschatz E
    Nat Commun; 2020 Nov; 11(1):5852. PubMed ID: 33203875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved hybrid Allen-Cahn phase-field-based lattice Boltzmann method for incompressible two-phase flows.
    Liu X; Chai Z; Shi B
    Phys Rev E; 2023 Mar; 107(3-2):035308. PubMed ID: 37073063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disrupted coarsening in complex Cahn-Hilliard dynamics.
    Simeone D; Demange G; Luneville L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032116. PubMed ID: 24125222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space.
    Kavvas ML; Ercan A
    Sci Rep; 2022 Nov; 12(1):19337. PubMed ID: 36369242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase transition in time-reversible Navier-Stokes equations.
    Shukla V; Dubrulle B; Nazarenko S; Krstulovic G; Thalabard S
    Phys Rev E; 2019 Oct; 100(4-1):043104. PubMed ID: 31770927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consistent and conservative phase-field-based lattice Boltzmann method for incompressible two-phase flows.
    Zhan C; Chai Z; Shi B
    Phys Rev E; 2022 Aug; 106(2-2):025319. PubMed ID: 36109994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing Turing complete Euler flows in dimension 3.
    Cardona R; Miranda E; Peralta-Salas D; Presas F
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33947820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical equations for the vector potential and the velocity potential in incompressible irrotational Euler flows: a refined Bernoulli theorem.
    Ohkitani K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033010. PubMed ID: 26465559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice Boltzmann algorithm to simulate isotropic-nematic emulsions.
    Sulaiman N; Marenduzzo D; Yeomans JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041708. PubMed ID: 17155079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.