These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 28085309)

  • 21. Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations.
    Dascaliuc R; Michalowski N; Thomann E; Waymire EC
    Chaos; 2015 Jul; 25(7):075402. PubMed ID: 26232975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetically reduced local Navier-Stokes equations: an alternative approach to hydrodynamics.
    Karlin IV; Tomboulides AG; Frouzakis CE; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035702. PubMed ID: 17025701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase-field lattice Boltzmann model with singular mobility for quasi-incompressible two-phase flows.
    Bao J; Guo Z
    Phys Rev E; 2024 Feb; 109(2-2):025302. PubMed ID: 38491598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lattice Boltzmann simulations of phase separation in chemically reactive binary fluids.
    Furtado K; Yeomans JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066124. PubMed ID: 16906931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth rate analysis of scalar gradients in generalized surface quasigeostrophic equations of ideal fluids.
    Ohkitani K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036317. PubMed ID: 21517597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Approximation of Classical Two-Phase Flows of Viscous Incompressible Fluids by a Navier-Stokes/Allen-Cahn System.
    Abels H; Fischer J; Moser M
    Arch Ration Mech Anal; 2024; 248(5):77. PubMed ID: 39239088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.
    Aland S; Lowengrub J; Voigt A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046321. PubMed ID: 23214691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical simulation of endocytosis: Viscous flow driven by membranes with non-uniformly distributed curvature-inducing molecules.
    Lowengrub J; Allard J; Aland S
    J Comput Phys; 2016 Mar; 309():112-128. PubMed ID: 26869729
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Turbulence and coarsening in active and passive binary mixtures.
    Berti S; Boffetta G; Cencini M; Vulpiani A
    Phys Rev Lett; 2005 Nov; 95(22):224501. PubMed ID: 16384226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microdroplet deposition under a liquid medium.
    Villanueva W; Sjödahl J; Stjernström M; Roeraade J; Amberg G
    Langmuir; 2007 Jan; 23(3):1171-7. PubMed ID: 17241029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Divergent expansion, Borel summability and three-dimensional Navier-Stokes equation.
    Costin O; Luo G; Tanveer S
    Philos Trans A Math Phys Eng Sci; 2008 Aug; 366(1876):2775-88. PubMed ID: 18487125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite Element Iterative Methods for the 3D Steady Navier--Stokes Equations.
    He Y
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reversible Navier-Stokes equation on logarithmic lattices.
    Costa G; Barral A; Dubrulle B
    Phys Rev E; 2023 Jun; 107(6-2):065106. PubMed ID: 37464713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical and numerical study of axisymmetric lattice Boltzmann models.
    Huang H; Lu XY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016701. PubMed ID: 19658832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-phase Model of Visco-elastic Incompressible Fluid Flow and its Computational Implementation.
    Xu S; Alber M; Xu Z
    Commun Comput Phys; 2019; 25(2):586-624. PubMed ID: 33868491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts.
    Zu YQ; He S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043301. PubMed ID: 23679542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lattice Boltzmann equation method for the Cahn-Hilliard equation.
    Zheng L; Zheng S; Zhai Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013309. PubMed ID: 25679741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brownian motion of droplets induced by thermal noise.
    Zhang H; Wang F; Ratke L; Nestler B
    Phys Rev E; 2024 Feb; 109(2-1):024208. PubMed ID: 38491665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple-distribution-function lattice Boltzmann method for convection-diffusion-system-based incompressible Navier-Stokes equations.
    Chai Z; Shi B; Zhan C
    Phys Rev E; 2022 Nov; 106(5-2):055305. PubMed ID: 36559463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-similarity in turbulence and its applications.
    Ohkitani K
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2226):20210048. PubMed ID: 35527638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.