These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 28085327)

  • 1. Non-Boltzmann stationary distributions and nonequilibrium relations in active baths.
    Argun A; Moradi AR; Pinçe E; Bagci GB; Imparato A; Volpe G
    Phys Rev E; 2016 Dec; 94(6-1):062150. PubMed ID: 28085327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Work relations connecting nonequilibrium steady states without detailed balance.
    Tang Y; Yuan R; Chen J; Ao P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042108. PubMed ID: 25974440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approach to equilibrium and nonequilibrium stationary distributions of interacting many-particle systems that are coupled to different heat baths.
    Netz RR
    Phys Rev E; 2020 Feb; 101(2-1):022120. PubMed ID: 32168558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonequilibrium work fluctuations for oscillators in non-Markovian baths.
    Mai T; Dhar A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061101. PubMed ID: 17677214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium work relations for systems subject to mechanical and thermal changes.
    Chelli R
    J Chem Phys; 2009 Feb; 130(5):054102. PubMed ID: 19206953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonequilibrium work relation beyond the Boltzmann-Gibbs distribution.
    Tang Y; Yuan R; Ao P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062112. PubMed ID: 25019730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crooks Fluctuation Theorem for Single Polymer Dynamics in Time-Dependent Flows: Understanding Viscoelastic Hysteresis.
    Zhou Y; Latinwo F; Schroeder CM
    Entropy (Basel); 2021 Dec; 24(1):. PubMed ID: 35052053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Straightforward quantum-mechanical derivation of the Crooks fluctuation theorem and the Jarzynski equality.
    Cohen D; Imry Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011111. PubMed ID: 23005372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat fluctuations in a nonequilibrium bath.
    Gomez-Solano JR; Petrosyan A; Ciliberto S
    Phys Rev Lett; 2011 May; 106(20):200602. PubMed ID: 21668212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluctuation-dissipation relation and stationary distribution of an exactly solvable many-particle model for active biomatter far from equilibrium.
    Netz RR
    J Chem Phys; 2018 May; 148(18):185101. PubMed ID: 29764155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tsallis statistics generalization of nonequilibrium work relations.
    Ponmurugan M
    Phys Rev E; 2016 Mar; 93(3):032107. PubMed ID: 27078292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jarzynski equality, Crooks fluctuation theorem, and the fluctuation theorems of heat for arbitrary initial states.
    Gong Z; Quan HT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012131. PubMed ID: 26274148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Test of the Jarzynski and Crooks fluctuation relations in an electronic system.
    Saira OP; Yoon Y; Tanttu T; Möttönen M; Averin DV; Pekola JP
    Phys Rev Lett; 2012 Nov; 109(18):180601. PubMed ID: 23215263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comment regarding "On the Crooks fluctuation theorem and the Jarzynski equality" [J. Chem. Phys. 129, 091101 (2008)] and "Nonequilibrium fluctuation-dissipation theorem of Brownian dynamics" [J. Chem. Phys. 129, 144113 (2008)].
    Crooks GE
    J Chem Phys; 2009 Mar; 130(10):107101; discussion 107102. PubMed ID: 19292558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic thermodynamics with odd controlling parameters.
    Li G; Tu ZC
    Phys Rev E; 2019 Jul; 100(1-1):012127. PubMed ID: 31499855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy-tailed phase-space distributions beyond Boltzmann-Gibbs: Confined laser-cooled atoms in a nonthermal state.
    Dechant A; Shafier ST; Kessler DA; Barkai E
    Phys Rev E; 2016 Aug; 94(2-1):022151. PubMed ID: 27627290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluctuation Theorems for Heat Exchanges between Passive and Active Baths.
    Semeraro M; Suma A; Negro G
    Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stationary superstatistics distributions of trapped run-and-tumble particles.
    Sevilla FJ; Arzola AV; Cital EP
    Phys Rev E; 2019 Jan; 99(1-1):012145. PubMed ID: 30780275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements.
    Gore J; Ritort F; Bustamante C
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12564-9. PubMed ID: 14528008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonequilibrium Thermodynamics in Biochemical Systems and Its Application.
    Zhang D; Ouyang Q
    Entropy (Basel); 2021 Feb; 23(3):. PubMed ID: 33668768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.