These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28085362)

  • 1. Random-fractal Ansatz for the configurations of two-dimensional critical systems.
    Lee CH; Ozaki D; Matsueda H
    Phys Rev E; 2016 Dec; 94(6-1):062144. PubMed ID: 28085362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Holographic entanglement entropy in Suzuki-Trotter decomposition of spin systems.
    Matsueda H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031101. PubMed ID: 22587032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcanonical finite-size scaling in second-order phase transitions with diverging specific heat.
    Fernandez LA; Gordillo-Guerrero A; Martin-Mayor V; Ruiz-Lorenzo JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051105. PubMed ID: 20364945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A duality principle for the multi-block entanglement entropy of free fermion systems.
    Carrasco JA; Finkel F; González-López A; Tempesta P
    Sci Rep; 2017 Sep; 7(1):11206. PubMed ID: 28894105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proper encoding for snapshot-entropy scaling in two-dimensional classical spin models.
    Matsueda H; Ozaki D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042167. PubMed ID: 26565228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical dynamics of the two-dimensional random-bond Potts model with nonequilibrium Monte Carlo simulations.
    Fan S; Zhong F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011122. PubMed ID: 19257016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quenched disorder: demixing thermal and disorder fluctuations.
    Balog I; Uzelac K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061124. PubMed ID: 23367910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entanglement entropy of random quantum critical points in one dimension.
    Refael G; Moore JE
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):260602. PubMed ID: 15697962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum multiscale entanglement renormalization ansatz channels.
    Giovannetti V; Montangero S; Fazio R
    Phys Rev Lett; 2008 Oct; 101(18):180503. PubMed ID: 18999805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Multiscale Entanglement Renormalization Ansatz as Holographic Surface-State Correspondence.
    Miyaji M; Numasawa T; Shiba N; Takayanagi T; Watanabe K
    Phys Rev Lett; 2015 Oct; 115(17):171602. PubMed ID: 26551098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic critical approach to self-organized criticality.
    Laneri K; Rozenfeld AF; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):065105. PubMed ID: 16485999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete scale invariance effects in the nonequilibrium critical behavior of the Ising magnet on a fractal substrate.
    Bab MA; Fabricius G; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041123. PubMed ID: 17155038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensor Network Renormalization Yields the Multiscale Entanglement Renormalization Ansatz.
    Evenbly G; Vidal G
    Phys Rev Lett; 2015 Nov; 115(20):200401. PubMed ID: 26613421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical interfaces in the random-bond Potts model.
    Jacobsen JL; Le Doussal P; Picco M; Santachiara R; Wiese KJ
    Phys Rev Lett; 2009 Feb; 102(7):070601. PubMed ID: 19257654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Duality and Fisher zeros in the two-dimensional Potts model on a square lattice.
    Astorino M; Canfora F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051140. PubMed ID: 20866218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of random and deterministic discrete scale invariance on the critical behavior of the Potts model.
    Monceau P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061123. PubMed ID: 23367909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the dynamic and static critical exponents of the two-dimensional three-state Potts model using linearly varying temperature.
    Fan S; Zhong F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041141. PubMed ID: 17994970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum criticality of hot random spin chains.
    Vasseur R; Potter AC; Parameswaran SA
    Phys Rev Lett; 2015 May; 114(21):217201. PubMed ID: 26066454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avalanches and dimensional reduction breakdown in the critical behavior of disordered systems.
    Tarjus G; Baczyk M; Tissier M
    Phys Rev Lett; 2013 Mar; 110(13):135703. PubMed ID: 23581342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractal geometry of critical systems.
    Antoniou NG; Contoyiannis YF; Diakonos FK
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3125-34. PubMed ID: 11088807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.