These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28085377)

  • 1. Effective slip for flow in a rotating channel bounded by stick-slip walls.
    Ng CO
    Phys Rev E; 2016 Dec; 94(6-1):063115. PubMed ID: 28085377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations.
    Priezjev NV; Darhuber AA; Troian SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041608. PubMed ID: 15903683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electro-osmotic flow in a rotating rectangular microchannel.
    Ng CO; Qi C
    Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20150200. PubMed ID: 26345088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparent slip of shear thinning fluid in a microchannel with a superhydrophobic wall.
    Patlazhan S; Vagner S
    Phys Rev E; 2017 Jul; 96(1-1):013104. PubMed ID: 29347200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures.
    Priezjev NV
    J Chem Phys; 2011 Nov; 135(20):204704. PubMed ID: 22128949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force balance in rapidly rotating Rayleigh-Bénard convection.
    Guzmán AJA; Madonia M; Cheng JS; Ostilla-Mónico R; Clercx HJH; Kunnen RPJ
    J Fluid Mech; 2021 Dec; 928():. PubMed ID: 34671171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-to-moderate Reynolds number swirling flow in an annular channel with a rotating end wall.
    Davoust L; Achard JL; Drazek L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023019. PubMed ID: 25768609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turbulent plane Poiseuille-Couette flow as a model for fluid slip over superhydrophobic surfaces.
    Nguyen QT; Papavassiliou DV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063015. PubMed ID: 24483565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011606. PubMed ID: 20365383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slip divergence of water flow in graphene nanochannels: the role of chirality.
    Wagemann E; Oyarzua E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2017 Mar; 19(13):8646-8652. PubMed ID: 28195288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertically Bounded Double Diffusive Convection in the Finger Regime: Comparing No-Slip versus Free-Slip Boundary Conditions.
    Yang Y; Verzicco R; Lohse D
    Phys Rev Lett; 2016 Oct; 117(18):184501. PubMed ID: 27834995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective slip over superhydrophobic surfaces in thin channels.
    Feuillebois F; Bazant MZ; Vinogradova OI
    Phys Rev Lett; 2009 Jan; 102(2):026001. PubMed ID: 19257293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear rate threshold for the boundary slip in dense polymer films.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031608. PubMed ID: 19905124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inelastic non-Newtonian flow over heterogeneously slippery surfaces.
    Haase AS; Wood JA; Sprakel LM; Lammertink RG
    Phys Rev E; 2017 Feb; 95(2-1):023105. PubMed ID: 28297838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonequilibrium molecular dynamics of the rheological and structural properties of linear and branched molecules. Simple shear and poiseuille flows; instabilities and slip.
    Castillo-Tejas J; Alvarado JF; González-Alatorre G; Luna-Bárcenas G; Sanchez IC; Macias-Salinas R; Manero O
    J Chem Phys; 2005 Aug; 123(5):054907. PubMed ID: 16108693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of cyclohexane vapor on stick-slip friction between mica surfaces.
    Ohnishi S; Kaneko D; Gong JP; Osada Y; Stewart AM; Yaminsky VV
    Langmuir; 2007 Jun; 23(13):7032-8. PubMed ID: 17518483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure dependence of confined liquid behavior subjected to boundary-driven shear.
    Heyes DM; Smith ER; Dini D; Spikes HA; Zaki TA
    J Chem Phys; 2012 Apr; 136(13):134705. PubMed ID: 22482578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition between Ekman Plumes and Vortex Condensates in Rapidly Rotating Thermal Convection.
    Aguirre Guzmán AJ; Madonia M; Cheng JS; Ostilla-Mónico R; Clercx HJH; Kunnen RPJ
    Phys Rev Lett; 2020 Nov; 125(21):214501. PubMed ID: 33274985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of liquid slip in electrokinetic parallel-plate microchannel flow.
    Yang J; Kwok DY
    J Colloid Interface Sci; 2003 Apr; 260(1):225-33. PubMed ID: 12742054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.