These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 28085387)

  • 1. Diffusion of active chiral particles.
    Sevilla FJ
    Phys Rev E; 2016 Dec; 94(6-1):062120. PubMed ID: 28085387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smoluchowski diffusion equation for active Brownian swimmers.
    Sevilla FJ; Sandoval M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052150. PubMed ID: 26066162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional active motion.
    Sevilla FJ
    Phys Rev E; 2020 Feb; 101(2-1):022608. PubMed ID: 32168716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of diffusion of active particles that move at constant speed in two dimensions.
    Sevilla FJ; Gómez Nava LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022130. PubMed ID: 25215711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental system for one-dimensional rotational brownian motion.
    McNaughton BH; Kinnunen P; Shlomi M; Cionca C; Pei SN; Clarke R; Argyrakis P; Kopelman R
    J Phys Chem B; 2011 May; 115(18):5212-8. PubMed ID: 21500841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion of tagged particle in an exclusion process.
    Barkai E; Silbey R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041129. PubMed ID: 20481699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time- and ensemble-averages in evolving systems: the case of Brownian particles in random potentials.
    Bewerunge J; Ladadwa I; Platten F; Zunke C; Heuer A; Egelhaaf SU
    Phys Chem Chem Phys; 2016 Jul; 18(28):18887-95. PubMed ID: 27353405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion of particles moving with constant speed.
    Ramakrishna SA; Kumar N
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt A):1381-9. PubMed ID: 11969898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized persistence dynamics for active motion.
    Sevilla FJ; Castro-Villarreal P
    Phys Rev E; 2021 Dec; 104(6-1):064601. PubMed ID: 35030873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach.
    Yariv E; Schnitzer O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032115. PubMed ID: 25314403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion.
    Jeon JH; Chechkin AV; Metzler R
    Phys Chem Chem Phys; 2014 Aug; 16(30):15811-7. PubMed ID: 24968336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise.
    Wang W; Cherstvy AG; Liu X; Metzler R
    Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adiabatic elimination of inertia of the stochastic microswimmer driven by α-stable noise.
    Noetel J; Sokolov IM; Schimansky-Geier L
    Phys Rev E; 2017 Oct; 96(4-1):042610. PubMed ID: 29347544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic diffusion across an external magnetic field and large-scale fluctuations in magnetized plasmas.
    Holod I; Zagorodny A; Weiland J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046401. PubMed ID: 15903788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic theory of anomalous diffusion based on particle interactions.
    Lutsko JF; Boon JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022108. PubMed ID: 24032776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster.
    Mardoukhi Y; Jeon JH; Metzler R
    Phys Chem Chem Phys; 2015 Nov; 17(44):30134-47. PubMed ID: 26503611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fokker-Planck equation for Coulomb relaxation and wave-particle diffusion: Spectral solution and the stability of the Kappa distribution to Coulomb collisions.
    Zhang W; Shizgal BD
    Phys Rev E; 2020 Dec; 102(6-1):062103. PubMed ID: 33466053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous diffusion for overdamped particles driven by cross-correlated white noise sources.
    Denisov SI; Vitrenko AN; Horsthemke W; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036120. PubMed ID: 16605611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.