These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 28085424)

  • 1. Rotational tumbling of Escherichia coli aggregates under shear.
    Portela R; Patrício P; Almeida PL; Sobral RG; Franco JM; Leal CR
    Phys Rev E; 2016 Dec; 94(6-1):062402. PubMed ID: 28085424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Living bacteria rheology: population growth, aggregation patterns, and collective behavior under different shear flows.
    Patrício P; Almeida PL; Portela R; Sobral RG; Grilo IR; Cidade T; Leal CR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022720. PubMed ID: 25215771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motility and cell shape roles in the rheology of growing bacteria cultures.
    Portela R; Almeida PL; Sobral RG; Leal CR
    Eur Phys J E Soft Matter; 2019 Mar; 42(3):26. PubMed ID: 30810829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Newtonian viscosity of Escherichia coli suspensions.
    Gachelin J; Miño G; Berthet H; Lindner A; Rousselet A; Clément E
    Phys Rev Lett; 2013 Jun; 110(26):268103. PubMed ID: 23848926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combined rheometry and imaging study of viscosity reduction in bacterial suspensions.
    Martinez VA; Clément E; Arlt J; Douarche C; Dawson A; Schwarz-Linek J; Creppy AK; Škultéty V; Morozov AN; Auradou H; Poon WCK
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2326-2331. PubMed ID: 31964833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-constant link tension coefficient in the tumbling-snake model subjected to simple shear.
    Stephanou PS; Kröger M
    J Chem Phys; 2017 Nov; 147(17):174903. PubMed ID: 29117693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of viscosity and inertial effects on tank-treading and tumbling motions of vesicles under shear flow.
    Kim Y; Lai MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066321. PubMed ID: 23368052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheology of bacterial superfluids in viscous environments.
    Chui JYY; Douarche C; Auradou H; Juanes R
    Soft Matter; 2021 Jul; 17(29):7004-7013. PubMed ID: 34240724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy.
    Gan T; Gong X; Schönherr H; Zhang G
    Biointerphases; 2016 Dec; 11(4):041005. PubMed ID: 27907987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface shear rheological studies of marine phytoplankton cultures-Nitzschia closterium, Thalassiosira rotula, Thalassiosira punctigera and Phaeocystis sp.
    Kuhnhenn V; Krägel J; Horstmann U; Miller R
    Colloids Surf B Biointerfaces; 2006 Jan; 47(1):29-35. PubMed ID: 16387477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of pulsed IR-light on the rheological parameters of blood in vitro.
    Nawrocka-Bogusz H; Marcinkowska-Gapińska A
    Biorheology; 2014; 51(1):71-9. PubMed ID: 24898338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling.
    Soto-Aquino D; Rosso D; Rinaldi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056306. PubMed ID: 22181497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear sensitivity of hybridoma cells in batch, fed-batch, and continuous cultures.
    Petersen JF; McIntire LV; Papoutsakis ET
    Biotechnol Prog; 1990; 6(2):114-20. PubMed ID: 1366545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Run and tumble chemotaxis in a shear flow: the effect of temporal comparisons, persistence, rotational diffusion, and cell shape.
    Locsei JT; Pedley TJ
    Bull Math Biol; 2009 Jul; 71(5):1089-116. PubMed ID: 19198954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turning Bacteria Suspensions into Superfluids.
    López HM; Gachelin J; Douarche C; Auradou H; Clément E
    Phys Rev Lett; 2015 Jul; 115(2):028301. PubMed ID: 26207507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the membrane potential during E. coli growth stages.
    Bot CT; Prodan C
    Biophys Chem; 2010 Feb; 146(2-3):133-7. PubMed ID: 20031298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of abrupt shifts in temperature on the lag phase duration of Escherichia coli and Klebsiella oxytoca.
    Mellefont LA; Ross T
    Int J Food Microbiol; 2003 Jun; 83(3):295-305. PubMed ID: 12745234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stochastic model for directional changes of swimming bacteria.
    Fier G; Hansmann D; Buceta RC
    Soft Matter; 2017 May; 13(18):3385-3394. PubMed ID: 28429013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vacillating breathing and tumbling of vesicles under shear flow.
    Misbah C
    Phys Rev Lett; 2006 Jan; 96(2):028104. PubMed ID: 16486649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role and regulation of sigma S in general resistance conferred by low-shear simulated microgravity in Escherichia coli.
    Lynch SV; Brodie EL; Matin A
    J Bacteriol; 2004 Dec; 186(24):8207-12. PubMed ID: 15576768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.