These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28085450)

  • 1. Rheology of sediment transported by a laminar flow.
    Houssais M; Ortiz CP; Durian DJ; Jerolmack DJ
    Phys Rev E; 2016 Dec; 94(6-1):062609. PubMed ID: 28085450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Onset of sediment transport is a continuous transition driven by fluid shear and granular creep.
    Houssais M; Ortiz CP; Durian DJ; Jerolmack DJ
    Nat Commun; 2015 Mar; 6():6527. PubMed ID: 25751296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unifying suspension and granular rheology.
    Boyer F; Guazzelli É; Pouliquen O
    Phys Rev Lett; 2011 Oct; 107(18):188301. PubMed ID: 22107679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition from the viscous to inertial regime in dense suspensions.
    Trulsson M; Andreotti B; Claudin P
    Phys Rev Lett; 2012 Sep; 109(11):118305. PubMed ID: 23005688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheology of cohesive granular materials across multiple dense-flow regimes.
    Gu Y; Chialvo S; Sundaresan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032206. PubMed ID: 25314436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constant Stress and Pressure Rheology of Colloidal Suspensions.
    Wang M; Brady JF
    Phys Rev Lett; 2015 Oct; 115(15):158301. PubMed ID: 26550755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of grain shape and material on the nonlocal rheology of dense granular flows.
    Fazelpour F; Tang Z; Daniels KE
    Soft Matter; 2022 Feb; 18(7):1435-1442. PubMed ID: 35080563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relaxation-type nonlocal inertial-number rheology for dry granular flows.
    Lee KL; Yang FL
    Phys Rev E; 2017 Dec; 96(6-1):062909. PubMed ID: 29347369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridging the rheology of granular flows in three regimes.
    Chialvo S; Sun J; Sundaresan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021305. PubMed ID: 22463200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlocal rheological properties of granular flows near a jamming limit.
    Aranson IS; Tsimring LS; Malloggi F; Clément E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031303. PubMed ID: 18851027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration through transients approach to the μ(I) rheology.
    Coquand O; Sperl M; Kranz WT
    Phys Rev E; 2020 Sep; 102(3-1):032602. PubMed ID: 33075983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow regime transitions in dense non-Brownian suspensions: rheology, microstructural characterization, and constitutive modeling.
    Ness C; Sun J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012201. PubMed ID: 25679613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-local rheology in dense granular flows: Revisiting the concept of fluidity.
    Bouzid M; Izzet A; Trulsson M; Clément E; Claudin P; Andreotti B
    Eur Phys J E Soft Matter; 2015 Nov; 38(11):125. PubMed ID: 26614496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheology of debris flow materials is controlled by the distance from jamming.
    Kostynick R; Matinpour H; Pradeep S; Haber S; Sauret A; Meiburg E; Dunne T; Arratia P; Jerolmack D
    Proc Natl Acad Sci U S A; 2022 Nov; 119(44):e2209109119. PubMed ID: 36279442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheology and contact lifetimes in dense granular flows.
    Silbert LE; Grest GS; Brewster R; Levine AJ
    Phys Rev Lett; 2007 Aug; 99(6):068002. PubMed ID: 17930867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. River-bed armouring as a granular segregation phenomenon.
    Ferdowsi B; Ortiz CP; Houssais M; Jerolmack DJ
    Nat Commun; 2017 Nov; 8(1):1363. PubMed ID: 29118422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.
    Lashgari I; Picano F; Breugem WP; Brandt L
    Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheology of Suspensions of Non-Brownian Soft Spheres across the Jamming and Viscous-to-Inertial Transitions.
    Tapia F; Hong CW; Aussillous P; Guazzelli É
    Phys Rev Lett; 2024 Aug; 133(8):088201. PubMed ID: 39241733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Granular friction, Coulomb failure, and the fluid-solid transition for horizontally shaken granular materials.
    Metcalfe G; Tennakoon SG; Kondic L; Schaeffer DG; Behringer RP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031302. PubMed ID: 11909041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local Rheology Relation with Variable Yield Stress Ratio across Dry, Wet, Dense, and Dilute Granular Flows.
    Pähtz T; Durán O; de Klerk DN; Govender I; Trulsson M
    Phys Rev Lett; 2019 Jul; 123(4):048001. PubMed ID: 31491250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.