These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28085475)

  • 1. Application of the dissipative particle dynamics method to the instability problem of a liquid thread.
    Mo CJ; Qin LZ; Zhao F; Yang LJ
    Phys Rev E; 2016 Dec; 94(6-1):063113. PubMed ID: 28085475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic interactions for single dissipative-particle-dynamics particles and their clusters and filaments.
    Pan W; Fedosov DA; Karniadakis GE; Caswell B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046706. PubMed ID: 18999560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of mesoscopic particle-based methods in microfluidic geometries.
    Zhao T; Wang X; Jiang L; Larson RG
    J Chem Phys; 2013 Aug; 139(8):084109. PubMed ID: 24006976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoscopic simulation of a thinning liquid bridge using the dissipative particle dynamics method.
    Mo CJ; Yang LJ; Zhao F; Cui KD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023008. PubMed ID: 26382504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertio-capillary cross-streamline drift of droplets in Poiseuille flow using dissipative particle dynamics simulations.
    Marson RL; Huang Y; Huang M; Fu T; Larson RG
    Soft Matter; 2018 Mar; 14(12):2267-2280. PubMed ID: 29513310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of DPD transport properties in modeling bioparticle motion under the effect of external forces: Low Reynolds number and high Schmidt scenarios.
    Waheed W; Alazzam A; Al-Khateeb AN; Sung HJ; Abu-Nada E
    J Chem Phys; 2019 Feb; 150(5):054901. PubMed ID: 30736676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipative particle dynamics for modeling micro-objects in microfluidics: application to dielectrophoresis.
    Waheed W; Alazzam A; Al-Khateeb AN; Abu-Nada E
    Biomech Model Mechanobiol; 2020 Feb; 19(1):389-400. PubMed ID: 31473843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD.
    Feng R; Xenos M; Girdhar G; Kang W; Davenport JW; Deng Y; Bluestein D
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):119-29. PubMed ID: 21369918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial migration of a rigid sphere in plane Poiseuille flow as a test of dissipative particle dynamics simulations.
    Huang Y; Marson RL; Larson RG
    J Chem Phys; 2018 Oct; 149(16):164912. PubMed ID: 30384765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study between dissipative particle dynamics and molecular dynamics for simple- and complex-geometry flows.
    Keaveny EE; Pivkin IV; Maxey M; Em Karniadakis G
    J Chem Phys; 2005 Sep; 123(10):104107. PubMed ID: 16178589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A practical method to avoid bond crossing in two-dimensional dissipative particle dynamics simulations.
    Liu H; Xue YH; Qian HJ; Lu ZY; Sun CC
    J Chem Phys; 2008 Jul; 129(2):024902. PubMed ID: 18624558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the comparisons between dissipative particle dynamics simulations and self-consistent field calculations of diblock copolymer microphase separation.
    Sandhu P; Zong J; Yang D; Wang Q
    J Chem Phys; 2013 May; 138(19):194904. PubMed ID: 23697438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows.
    Ye T; Phan-Thien N; Lim CT; Peng L; Shi H
    Phys Rev E; 2017 Jun; 95(6-1):063314. PubMed ID: 28709282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-fidelity scaling relationships for determining dissipative particle dynamics parameters from atomistic molecular dynamics simulations of polymeric liquids.
    Nafar Sefiddashti MH; Boudaghi-Khajehnobar M; Edwards BJ; Khomami B
    Sci Rep; 2020 Mar; 10(1):4458. PubMed ID: 32157144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method.
    Kojic M; Filipovic N; Tsuda A
    Comput Methods Appl Mech Eng; 2013 Jan; 197(6-8):821-833. PubMed ID: 23814322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phase-field approach to no-slip boundary conditions in dissipative particle dynamics and other particle models for fluid flow in geometrically complex confined systems.
    Xu Z; Meakin P
    J Chem Phys; 2009 Jun; 130(23):234103. PubMed ID: 19548707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the importance of shear dissipative forces in coarse-grained dynamics of molecular liquids.
    Izvekov S; Rice BM
    Phys Chem Chem Phys; 2015 Apr; 17(16):10795-804. PubMed ID: 25812678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Lowe-Andersen thermostat as an alternative to the dissipative particle dynamics in the mesoscopic simulation of entangled polymers.
    Khani S; Yamanoi M; Maia J
    J Chem Phys; 2013 May; 138(17):174903. PubMed ID: 23656155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics.
    Jiang W; Huang J; Wang Y; Laradji M
    J Chem Phys; 2007 Jan; 126(4):044901. PubMed ID: 17286503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic relaxations in dissipative particle dynamics.
    Hansen JS; Greenfield ML; Dyre JC
    J Chem Phys; 2018 Jan; 148(3):034503. PubMed ID: 29352789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.