BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 28085739)

  • 41. Evaluation of a Test Battery to Assess Perception of Music in Children With Cochlear Implants.
    Roy AT; Scattergood-Keepper L; Carver C; Jiradejvong P; Butler C; Limb CJ
    JAMA Otolaryngol Head Neck Surg; 2014 Jun; 140(6):540-7. PubMed ID: 24722833
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparing the effect of auditory-only and auditory-visual modes in two groups of Persian children using cochlear implants: a randomized clinical trial.
    Oryadi Zanjani MM; Hasanzadeh S; Rahgozar M; Shemshadi H; Purdy SC; Mahmudi Bakhtiari B; Vahab M
    Int J Pediatr Otorhinolaryngol; 2013 Sep; 77(9):1545-50. PubMed ID: 23896386
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Music and Speech Perception in Prelingually Deafened Young Listeners With Cochlear Implants: A Preliminary Study Using Sung Speech.
    Wheeler HJ; Hatch DR; Moody-Antonio SA; Nie Y
    J Speech Lang Hear Res; 2022 Oct; 65(10):3951-3965. PubMed ID: 36179251
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Emotional response to music by postlingually-deafened adult cochlear implant users].
    Wang S; Dong R; Zhou Y; Li J; Qi B; Liu B
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2012 Oct; 26(19):879-81. PubMed ID: 23285951
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cochlear implant users rely on tempo rather than on pitch information during perception of musical emotion.
    Caldwell M; Rankin SK; Jiradejvong P; Carver C; Limb CJ
    Cochlear Implants Int; 2015 Sep; 16 Suppl 3():S114-20. PubMed ID: 26561882
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Music perception and training for pediatric cochlear implant users.
    Jiam NT; Limb C
    Expert Rev Med Devices; 2020 Nov; 17(11):1193-1206. PubMed ID: 33090055
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Individual differences in the perception of melodic contours and pitch-accent timing in speech: Support for domain-generality of pitch processing.
    Morrill TH; McAuley JD; Dilley LC; Hambrick DZ
    J Exp Psychol Gen; 2015 Aug; 144(4):730-6. PubMed ID: 26214165
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neurophysiological Differences in Emotional Processing by Cochlear Implant Users, Extending Beyond the Realm of Speech.
    Deroche MLD; Felezeu M; Paquette S; Zeitouni A; Lehmann A
    Ear Hear; 2019; 40(5):1197-1209. PubMed ID: 30762600
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sustainable Benefits of High Variability Phonetic Training in Mandarin-speaking Kindergarteners With Cochlear Implants: Evidence From Categorical Perception of Lexical Tones.
    Zhang H; Ma W; Ding H; Zhang Y
    Ear Hear; 2023 Sep-Oct 01; 44(5):990-1006. PubMed ID: 36806578
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of cochlear implants on children's perception and production of speech prosody.
    Nakata T; Trehub SE; Kanda Y
    J Acoust Soc Am; 2012 Feb; 131(2):1307-14. PubMed ID: 22352504
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Emotional intelligence, not music training, predicts recognition of emotional speech prosody.
    Trimmer CG; Cuddy LL
    Emotion; 2008 Dec; 8(6):838-49. PubMed ID: 19102595
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Benefits of music training in mandarin-speaking pediatric cochlear implant users.
    Fu QJ; Galvin JJ; Wang X; Wu JL
    J Speech Lang Hear Res; 2015 Feb; 58(1):163-9. PubMed ID: 25321148
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of various electrode configurations on music perception, intonation and speaker gender identification.
    Landwehr M; Fürstenberg D; Walger M; von Wedel H; Meister H
    Cochlear Implants Int; 2014 Jan; 15(1):27-35. PubMed ID: 23684531
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Can nonlinguistic musical training change the way the brain processes speech? The expanded OPERA hypothesis.
    Patel AD
    Hear Res; 2014 Feb; 308():98-108. PubMed ID: 24055761
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Degradation of labial information modifies audiovisual speech perception in cochlear-implanted children.
    Huyse A; Berthommier F; Leybaert J
    Ear Hear; 2013; 34(1):110-21. PubMed ID: 23059850
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Musical Sound Quality in Cochlear Implant Users: A Comparison in Bass Frequency Perception Between Fine Structure Processing and High-Definition Continuous Interleaved Sampling Strategies.
    Roy AT; Carver C; Jiradejvong P; Limb CJ
    Ear Hear; 2015; 36(5):582-90. PubMed ID: 25906173
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contribution of hearing aids to music perception by cochlear implant users.
    Peterson N; Bergeson TR
    Cochlear Implants Int; 2015 Sep; 16 Suppl 3():S71-8. PubMed ID: 26561890
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reestablishing speech understanding through musical ear training after cochlear implantation: a study of the potential cortical plasticity in the brain.
    Petersen B; Mortensen MV; Gjedde A; Vuust P
    Ann N Y Acad Sci; 2009 Jul; 1169():437-40. PubMed ID: 19673820
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Benefits of Residual Hair Cell Function for Speech and Music Perception in Pediatric Bimodal Cochlear Implant Listeners.
    Cheng X; Liu Y; Wang B; Yuan Y; Galvin JJ; Fu QJ; Shu Y; Chen B
    Neural Plast; 2018; 2018():4610592. PubMed ID: 29849556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Perception of Sung Speech in Bimodal Cochlear Implant Users.
    Crew JD; Galvin JJ; Fu QJ
    Trends Hear; 2016 Nov; 20():. PubMed ID: 27837051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.