These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28085813)

  • 1. Dissipative preparation of distributed steady entanglement: an approach of unilateral qubit driving.
    Jin Z; Su SL; Zhu AD; Wang HF; Zhang S
    Opt Express; 2017 Jan; 25(1):88-101. PubMed ID: 28085813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of steady entanglement via unilateral qubit driving in bad cavities.
    Jin Z; Su SL; Zhu AD; Wang HF; Shen LT; Zhang S
    Sci Rep; 2017 Dec; 7(1):17648. PubMed ID: 29247250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of two-qubit steady entanglement through driving a single qubit.
    Shen LT; Chen RX; Yang ZB; Wu HZ; Zheng SB
    Opt Lett; 2014 Oct; 39(20):6046-9. PubMed ID: 25361152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissipative preparation of entanglement in optical cavities.
    Kastoryano MJ; Reiter F; Sørensen AS
    Phys Rev Lett; 2011 Mar; 106(9):090502. PubMed ID: 21405608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient shortcuts to adiabatic passage for three-dimensional entanglement generation via transitionless quantum driving.
    He S; Su SL; Wang DY; Sun WM; Bai CH; Zhu AD; Wang HF; Zhang S
    Sci Rep; 2016 Aug; 6():30929. PubMed ID: 27499169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissipative production of a maximally entangled steady state of two quantum bits.
    Lin Y; Gaebler JP; Reiter F; Tan TR; Bowler R; Sørensen AS; Leibfried D; Wineland DJ
    Nature; 2013 Dec; 504(7480):415-8. PubMed ID: 24270806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entanglement and entropy engineering of atomic two-qubit States.
    Clark SG; Parkins AS
    Phys Rev Lett; 2003 Jan; 90(4):047905. PubMed ID: 12570464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay.
    Su SL; Shao XQ; Wang HF; Zhang S
    Sci Rep; 2014 Dec; 4():7566. PubMed ID: 25523944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deterministic quantum teleportation through fiber channels.
    Huo M; Qin J; Cheng J; Yan Z; Qin Z; Su X; Jia X; Xie C; Peng K
    Sci Adv; 2018 Oct; 4(10):eaas9401. PubMed ID: 30345350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable entanglement preparations between atoms in spatially-separated cavities via quantum Zeno dynamics.
    Li WA; Wei LF
    Opt Express; 2012 Jun; 20(12):13440-50. PubMed ID: 22714371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adiabatic passage for three-dimensional entanglement generation through quantum Zeno dynamics.
    Liang Y; Su SL; Wu QC; Ji X; Zhang S
    Opt Express; 2015 Feb; 23(4):5064-77. PubMed ID: 25836541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Qubit teleportation between non-neighbouring nodes in a quantum network.
    Hermans SLN; Pompili M; Beukers HKC; Baier S; Borregaard J; Hanson R
    Nature; 2022 May; 605(7911):663-668. PubMed ID: 35614248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.
    Xu P; Yang XC; Mei F; Xue ZY
    Sci Rep; 2016 Jan; 6():18695. PubMed ID: 26804326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Scheme for Quantum Teleportation and Remote Quantum State Preparation of IoT Multiple Devices.
    Fu Y; Li D; Hua X; Jiang Y; Zhu Y; Zhou J; Yang X; Tan Y
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deterministic quantum state transfer and remote entanglement using microwave photons.
    Kurpiers P; Magnard P; Walter T; Royer B; Pechal M; Heinsoo J; Salathé Y; Akin A; Storz S; Besse JC; Gasparinetti S; Blais A; Wallraff A
    Nature; 2018 Jun; 558(7709):264-267. PubMed ID: 29899478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum entanglement between an optical photon and a solid-state spin qubit.
    Togan E; Chu Y; Trifonov AS; Jiang L; Maze J; Childress L; Dutt MV; Sørensen AS; Hemmer PR; Zibrov AS; Lukin MD
    Nature; 2010 Aug; 466(7307):730-4. PubMed ID: 20686569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entanglement replication in driven dissipative many-body systems.
    Zippilli S; Paternostro M; Adesso G; Illuminati F
    Phys Rev Lett; 2013 Jan; 110(4):040503. PubMed ID: 25166146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Splitting an Arbitrary Three-Qubit State via a Five-Qubit Cluster State and a Bell State.
    Xu G; Zhou T; Chen XB; Wang X
    Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of long-living entanglement between two distant three-level atoms in non-Markovian environments.
    Li C; Yang S; Song J; Xia Y; Ding W
    Opt Express; 2017 May; 25(10):10961-10971. PubMed ID: 28788783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracting information from qubit-environment correlations.
    Reina JH; Susa CE; Fanchini FF
    Sci Rep; 2014 Dec; 4():7443. PubMed ID: 25517102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.