These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 28085820)

  • 1. Room-temperature Fabry-Perot resonances in suspended InGaAs/InP quantum-well nanopillars on a silicon substrate.
    Malheiros-Silveira GN; Bhattacharya I; Deshpande SV; Skuridina D; Lu F; Chang-Hasnain CJ
    Opt Express; 2017 Jan; 25(1):271-277. PubMed ID: 28085820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanopillar lasers directly grown on silicon with heterostructure surface passivation.
    Sun H; Ren F; Ng KW; Tran TT; Li K; Chang-Hasnain CJ
    ACS Nano; 2014 Jul; 8(7):6833-9. PubMed ID: 24892949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-Controlled Growth of Monolithic InGaAs/InP Quantum Well Nanopillar Lasers on Silicon.
    Schuster F; Kapraun J; Malheiros-Silveira GN; Deshpande S; Chang-Hasnain CJ
    Nano Lett; 2017 Apr; 17(4):2697-2702. PubMed ID: 28328224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit.
    Wang R; Sprengel S; Boehm G; Muneeb M; Baets R; Amann MC; Roelkens G
    Opt Express; 2016 Sep; 24(18):21081-9. PubMed ID: 27607711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. InP-In
    Fonseka HA; Ameruddin AS; Caroff P; Tedeschi D; De Luca M; Mura F; Guo Y; Lysevych M; Wang F; Tan HH; Polimeni A; Jagadish C
    Nanoscale; 2017 Sep; 9(36):13554-13562. PubMed ID: 28872181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars.
    Higuera-Rodriguez A; Romeira B; Birindelli S; Black LE; Smalbrugge E; van Veldhoven PJ; Kessels WM; Smit MK; Fiore A
    Nano Lett; 2017 Apr; 17(4):2627-2633. PubMed ID: 28340296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room-temperature electrically-pumped 1.5 μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si.
    Zhu S; Shi B; Li Q; Lau KM
    Opt Express; 2018 May; 26(11):14514-14523. PubMed ID: 29877487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands.
    Han Y; Li Q; Ng KW; Zhu S; Lau KM
    Nanotechnology; 2018 Jun; 29(22):225601. PubMed ID: 29517486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active holography in InGaAs/InP quantum-well microcavities.
    Sun H; Nolte DD; Hyland J; Harmon E
    Opt Lett; 2013 Aug; 38(15):2792-5. PubMed ID: 23903144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composition homogeneity in InGaAs/GaAs core-shell nanopillars monolithically grown on silicon.
    Ng KW; Ko WS; Chen R; Lu F; Tran TT; Li K; Chang-Hasnain CJ
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16706-11. PubMed ID: 25221844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon.
    Li K; Sun H; Ren F; Ng KW; Tran TT; Chen R; Chang-Hasnain CJ
    Nano Lett; 2014 Jan; 14(1):183-90. PubMed ID: 24299042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator.
    Han Y; Ng WK; Xue Y; Li Q; Wong KS; Lau KM
    Opt Lett; 2019 Feb; 44(4):767-770. PubMed ID: 30767982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unconventional growth mechanism for monolithic integration of III-V on silicon.
    Ng KW; Ko WS; Tran TT; Chen R; Nazarenko MV; Lu F; Dubrovskii VG; Kamp M; Forchel A; Chang-Hasnain CJ
    ACS Nano; 2013 Jan; 7(1):100-7. PubMed ID: 23240995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultracompact bottom-up photonic crystal lasers on silicon-on-insulator.
    Lee WJ; Kim H; You JB; Huffaker DL
    Sci Rep; 2017 Aug; 7(1):9543. PubMed ID: 28842698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon.
    Tian B; Wang Z; Pantouvaki M; Absil P; Van Campenhout J; Merckling C; Van Thourhout D
    Nano Lett; 2017 Jan; 17(1):559-564. PubMed ID: 27997215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microelectromechanically tunable asymmetric Fabry-Perot quantum well modulator at 1.55 microm.
    Stievater TH; Park D; Pruessner MW; Rabinovich WS; Kanakaraju S; Richardson CJ
    Opt Express; 2008 Oct; 16(21):16766-73. PubMed ID: 18852786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission.
    Moewe M; Chuang LC; Crankshaw S; Ng KW; Chang-Hasnain C
    Opt Express; 2009 May; 17(10):7831-6. PubMed ID: 19434114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature characteristics of silicon core optical fiber Fabry-Perot interferometer.
    Zhang S; Zhao Z; Chen N; Pang F; Chen Z; Liu Y; Wang T
    Opt Lett; 2015 Apr; 40(7):1362-5. PubMed ID: 25831333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits.
    Wang R; Sprengel S; Muneeb M; Boehm G; Baets R; Amann MC; Roelkens G
    Opt Express; 2015 Oct; 23(20):26834-41. PubMed ID: 26480194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. InGaN nanopillars grown on silicon substrate using plasma assisted molecular beam epitaxy.
    Vajpeyi AP; Ajagunna AO; Tsagaraki K; Androulidaki M; Georgakilas A
    Nanotechnology; 2009 Aug; 20(32):325605. PubMed ID: 19620761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.