These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 28085872)

  • 1. Speckle patterns produced by an optical vortex and its application to surface roughness measurements.
    Passos MH; Lemos MR; Almeida SR; Balthazar WF; da Silva L; Huguenin JA
    Appl Opt; 2017 Jan; 56(2):330-335. PubMed ID: 28085872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the adjustable slight roughness emulated by a spatial light modulator employing the vortex beam speckle pattern.
    Cui C; Wang Z; Zhan X; Wang J; Liu L; Li Z; Wu C
    Appl Opt; 2020 Apr; 59(12):3630-3635. PubMed ID: 32400479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of statistical properties of rough surface profiles from the Hurst exponent of speckle patterns.
    Camargo ALP; Dias MRB; Lemos MR; Mello MM; da Silva L; Dos Santos PAM; Huguenin JAO
    Appl Opt; 2020 Jul; 59(20):5957-5966. PubMed ID: 32672739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of in-plane displacements using the phase singularities generated by directional wavelet transforms of speckle pattern images.
    Vadnjal AL; Etchepareborda P; Federico A; Kaufmann GH
    Appl Opt; 2013 Mar; 52(9):1805-13. PubMed ID: 23518721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical surface roughness determination using speckle correlation technique.
    Léger D; Mathieu E; Perrin JC
    Appl Opt; 1975 Apr; 14(4):872-7. PubMed ID: 20134992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vortex metrology using Fourier analysis techniques: vortex networks correlation fringes.
    Angel-Toro L; Sierra-Sosa D; Tebaldi M; Bolognini N
    Appl Opt; 2012 Oct; 51(30):7411-9. PubMed ID: 23089799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of fractal rough-surface Hurst exponent on speckle in imaging systems.
    Kang D; Milster TD
    Opt Lett; 2009 Oct; 34(20):3247-9. PubMed ID: 19838288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspect ratio of elongated polychromatic far-field speckles of continuous and discrete spectral distribution with respect to surface roughness characterization.
    Lehmann P
    Appl Opt; 2002 Apr; 41(10):2008-14. PubMed ID: 11936804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial phase-shift dual-beam speckle interferometry.
    Gao X; Yang L; Wang Y; Zhang B; Dan X; Li J; Wu S
    Appl Opt; 2018 Jan; 57(3):414-419. PubMed ID: 29400790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creation of optical speckle by randomizing a vortex-lattice.
    Ortega AB; Bucio-Pacheco S; Lopez-Huidobro S; Perez-Garcia L; Poveda-Cuevas FJ; Seman JA; Arzola AV; Volke-Sepúlveda K
    Opt Express; 2019 Feb; 27(4):4105-4115. PubMed ID: 30876031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and design of an anamorphic optical processor for speckle metrology and velocimetry.
    Collicott SH; Hesselink L
    Appl Opt; 1992 Apr; 31(10):1646-59. PubMed ID: 20720801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical vortex metrology based on the core structures of phase singularities in Laguerre-Gauss transform of a speckle pattern.
    Wang W; Yokozeki T; Ishijima R; Takeda M; Hanson SG
    Opt Express; 2006 Oct; 14(22):10195-206. PubMed ID: 19529415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface roughness measurements by means of polychromatic speckle patterns.
    Stansberg CT
    Appl Opt; 1979 Dec; 18(23):4051-60. PubMed ID: 20216751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical vortex behavior in dynamic speckle fields.
    Kirkpatrick SJ; Khaksari K; Thomas D; Duncan DD
    J Biomed Opt; 2012 May; 17(5):050504. PubMed ID: 22612119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-roughness measurement based on the intensity correlation function of scattered light under speckle-pattern illumination.
    Lehmann P
    Appl Opt; 1999 Mar; 38(7):1144-52. PubMed ID: 18305724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-plane displacement measurement in vortex metrology by synthetic network correlation fringes.
    Angel-Toro L; Sierra-Sosa D; Tebaldi M; Bolognini N
    J Opt Soc Am A Opt Image Sci Vis; 2013 Mar; 30(3):462-9. PubMed ID: 23456122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface roughness measurement using dichromatic speckle pattern: an experimental study.
    Fujii H; Lit JW
    Appl Opt; 1978 Sep; 17(17):2690-4. PubMed ID: 20203852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simplifying the Experimental Detection of the Vortex Topological Charge Based on the Simultaneous Astigmatic Transformation of Several Types and Levels in the Same Focal Plane.
    Khorin PA; Khonina SN; Porfirev AP; Kazanskiy NL
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vortex analysis in dynamic speckle images.
    Sendra GH; Rabal HJ; Arizaga R; Trivi M
    J Opt Soc Am A Opt Image Sci Vis; 2009 Dec; 26(12):2634-9. PubMed ID: 19956334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface roughness measurement by means of polychromatic speckle elongation.
    Lehmann P; Patzelt S; Schöne A
    Appl Opt; 1997 Apr; 36(10):2188-97. PubMed ID: 18253191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.