BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 28085968)

  • 21. On the origin of the compound action potentials (N1, N2) of the cochlea of the rat.
    Møller AR
    Exp Neurol; 1983 Jun; 80(3):633-44. PubMed ID: 6852156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. First-spike timing of auditory-nerve fibers and comparison with auditory cortex.
    Heil P; Irvine DR
    J Neurophysiol; 1997 Nov; 78(5):2438-54. PubMed ID: 9356395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Age-related loss of activity of auditory-nerve fibers.
    Schmiedt RA; Mills JH; Boettcher FA
    J Neurophysiol; 1996 Oct; 76(4):2799-803. PubMed ID: 8899648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cochlear nerve fiber responses to amplitude-modulated stimuli: variations with spontaneous rate and other response characteristics.
    Cooper NP; Robertson D; Yates GK
    J Neurophysiol; 1993 Jul; 70(1):370-86. PubMed ID: 8395584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The potential use of low-frequency tones to locate regions of outer hair cell loss.
    Kamerer AM; Diaz FJ; Peppi M; Chertoff ME
    Hear Res; 2016 Dec; 342():39-47. PubMed ID: 27677389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Central projections of auditory nerve fibers of differing spontaneous rate, II: Posteroventral and dorsal cochlear nuclei.
    Liberman MC
    J Comp Neurol; 1993 Jan; 327(1):17-36. PubMed ID: 8432906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Auditory nerve neurophonic tuning curves produced by masking of round window responses.
    Henry KR
    Hear Res; 1997 Feb; 104(1-2):167-76. PubMed ID: 9119760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrocochleographic and mechanical assessment of round window stimulation with an active middle ear prosthesis.
    Koka K; Holland NJ; Lupo JE; Jenkins HA; Tollin DJ
    Hear Res; 2010 May; 263(1-2):128-37. PubMed ID: 19720125
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Auditory nerve fibre responses to salicylate revisited.
    Müller M; Klinke R; Arnold W; Oestreicher E
    Hear Res; 2003 Sep; 183(1-2):37-43. PubMed ID: 13679136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency thresholds of rat cochlear nerve fibers.
    Zheng CM; Ito S; Minami S; Horikawa J; Murata K
    Jpn J Physiol; 1992; 42(3):459-72. PubMed ID: 1434105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frequency selectivity in the auditory periphery: similarities between damaged and developing ears.
    Walsh EJ; McGee J
    Am J Otolaryngol; 1990; 11(1):23-32. PubMed ID: 2321707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Round-window recorded potential of single-fibre discharge (unit response) in normal and noise-damaged cochleas.
    Versnel H; Prijs VF; Schoonhoven R
    Hear Res; 1992 May; 59(2):157-70. PubMed ID: 1618707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers.
    Rhode WS; Smith PH
    Hear Res; 1985 May; 18(2):159-68. PubMed ID: 2995298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wiener kernels of chinchilla auditory-nerve fibers: verification using responses to tones, clicks, and noise and comparison with basilar-membrane vibrations.
    Temchin AN; Recio-Spinoso A; van Dijk P; Ruggero MA
    J Neurophysiol; 2005 Jun; 93(6):3635-48. PubMed ID: 15659530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of auditory single fiber responses during acoustic and electric stimulation of the intact cat cochlea.
    Hartmann R; Topp G; Klinke R
    Arch Otorhinolaryngol; 1982; 234(2):187-8. PubMed ID: 7092705
    [No Abstract]   [Full Text] [Related]  

  • 37. Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers.
    Heil P; Neubauer H; Brown M; Irvine DR
    Hear Res; 2008 Apr; 238(1-2):25-38. PubMed ID: 18077116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Noise-Induced Hearing Loss in Gerbil: Round Window Assays of Synapse Loss.
    Jeffers PWC; Bourien J; Diuba A; Puel JL; Kujawa SG
    Front Cell Neurosci; 2021; 15():699978. PubMed ID: 34385909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase-locked responses to tones of chinchilla auditory nerve fibers: implications for apical cochlear mechanics.
    Temchin AN; Ruggero MA
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):297-318. PubMed ID: 19921334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laser stimulation of single auditory nerve fibers.
    Littlefield PD; Vujanovic I; Mundi J; Matic AI; Richter CP
    Laryngoscope; 2010 Oct; 120(10):2071-82. PubMed ID: 20830761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.