BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 28085968)

  • 61. Input-output curves of low and high spontaneous rate auditory nerve fibers are exponential near threshold.
    Horst JW; McGee J; Walsh EJ
    Hear Res; 2018 Sep; 367():195-206. PubMed ID: 30135035
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transient focal cooling at the round window and cochlear nucleus shows round window CAP originates from cochlear neurones alone.
    McMahon CM; Brown DJ; Patuzzi RB
    Hear Res; 2004 Apr; 190(1-2):75-86. PubMed ID: 15051131
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss.
    Heinz MG; Young ED
    J Neurophysiol; 2004 Feb; 91(2):784-95. PubMed ID: 14534289
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Improved temporal coding of sinusoids in electric stimulation of the auditory nerve using desynchronizing pulse trains.
    Litvak LM; Delgutte B; Eddington DK
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2079-98. PubMed ID: 14587607
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Prospective electrophysiologic findings of round window stimulation in a model of experimentally induced stapes fixation.
    Lupo JE; Koka K; Holland NJ; Jenkins HA; Tollin DJ
    Otol Neurotol; 2009 Dec; 30(8):1215-24. PubMed ID: 19779388
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Spatial response profiles of posteroventral cochlear nucleus neurons and auditory-nerve fibers in unanesthetized decerebrate cats: response to pure tones.
    Kim DO; Parham K; Sirianni JG; Chang SO
    J Acoust Soc Am; 1991 Jun; 89(6):2804-17. PubMed ID: 1918624
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hair cell and neural contributions to the cochlear summating potential.
    Pappa AK; Hutson KA; Scott WC; Wilson JD; Fox KE; Masood MM; Giardina CK; Pulver SH; Grana GD; Askew C; Fitzpatrick DC
    J Neurophysiol; 2019 Jun; 121(6):2163-2180. PubMed ID: 30943095
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Responses of gerbil and guinea pig auditory nerve fibers to low-frequency sinusoids.
    Oshima W; Strelioff D
    Hear Res; 1983 Nov; 12(2):167-84. PubMed ID: 6643289
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synchronous responses of the primary auditory fibers to the onset of tone burst and their relation to compound action potentials.
    Ozdamar O; Dallos P
    Brain Res; 1978 Oct; 155(1):169-75. PubMed ID: 688009
    [No Abstract]   [Full Text] [Related]  

  • 70. [Conversion of sound into auditory nerve action potentials].
    Encke J; Kreh J; Völk F; Hemmert W
    HNO; 2016 Nov; 64(11):808-814. PubMed ID: 27785535
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Phase Locking of Auditory Nerve Fibers: The Role of Lowpass Filtering by Hair Cells.
    Peterson AJ; Heil P
    J Neurosci; 2020 Jun; 40(24):4700-4714. PubMed ID: 32376778
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Discharge rate of the auditory nerve during noise revealed by electrocochlear stimulation.
    Charlet de Sauvage R; Erre JP; Aran JM
    Hear Res; 2000 Apr; 142(1-2):141-58. PubMed ID: 10748336
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Threshold tuning curves of chinchilla auditory-nerve fibers. I. Dependence on characteristic frequency and relation to the magnitudes of cochlear vibrations.
    Temchin AN; Rich NC; Ruggero MA
    J Neurophysiol; 2008 Nov; 100(5):2889-98. PubMed ID: 18701751
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cochlear electrical activity in the C57BL/6 laboratory mouse: volume-conducted vertex and round window responses.
    Henry KR; Chole RA
    Acta Otolaryngol; 1979; 87(1-2):61-8. PubMed ID: 760378
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An improved model for the rate-level functions of auditory-nerve fibers.
    Heil P; Neubauer H; Irvine DR
    J Neurosci; 2011 Oct; 31(43):15424-37. PubMed ID: 22031889
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cochlear basal and apical differences reflected in the effects of cooling on responses of single auditory nerve fibers.
    Ohlemiller KK; Siegel JH
    Hear Res; 1994 Nov; 80(2):174-90. PubMed ID: 7896576
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Examining the auditory nerve fiber response to high rate cochlear implant stimulation: chronic sensorineural hearing loss and facilitation.
    Heffer LF; Sly DJ; Fallon JB; White MW; Shepherd RK; O'Leary SJ
    J Neurophysiol; 2010 Dec; 104(6):3124-35. PubMed ID: 20926607
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ototoxic effects of salicylates on the responses of single cochlear nerve fibres and on cochlear potentials.
    Evans EF; Borerwe TA
    Br J Audiol; 1982 May; 16(2):101-8. PubMed ID: 7093561
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window.
    He W; Porsov E; Kemp D; Nuttall AL; Ren T
    PLoS One; 2012; 7(3):e34356. PubMed ID: 22470560
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Enhancement of the cochlear nerve compound action potential: sharply defined frequency-intensity domains bordering the tuning curve.
    Henry KR
    Hear Res; 1991 Nov; 56(1-2):239-45. PubMed ID: 1769917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.