These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28086113)

  • 1. General combined model for the hydrodynamic behaviour of fixed and fluidised granular beds.
    Hoyland G
    Water Res; 2017 Mar; 111():163-176. PubMed ID: 28086113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition from creeping via viscous-inertial to turbulent flow in fixed beds.
    Hlushkou D; Tallarek U
    J Chromatogr A; 2006 Sep; 1126(1-2):70-85. PubMed ID: 16806240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes.
    Ranganathan P; Gu S
    Bioresour Technol; 2016 Aug; 213():333-341. PubMed ID: 26927234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New hydraulic insights into rapid sand filter bed backwashing using the Carman-Kozeny model.
    Kramer OJI; de Moel PJ; Padding JT; Baars ET; Rutten SB; Elarbab AHE; Hooft JFM; Boek ES; van der Hoek JP
    Water Res; 2021 Jun; 197():117085. PubMed ID: 33862394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysing extraction uniformity from porous coffee beds using mathematical modelling and computational fluid dynamics approaches.
    Moroney KM; O'Connell K; Meikle-Janney P; O'Brien SBG; Walker GM; Lee WT
    PLoS One; 2019; 14(7):e0219906. PubMed ID: 31365538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of agarose-nickel nanoporous composite particles customized for liquid expanded bed adsorption.
    Asghari F; Jahanshahi M; Ghoreyshi AA
    J Chromatogr A; 2012 Jun; 1242():35-42. PubMed ID: 22564699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural optimization of porous media for fast and controlled capillary flows.
    Shou D; Fan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053021. PubMed ID: 26066262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and evaluation of low-cost agarose-zinc nanoporous composite matrix: influence of adsorbent density and size distribution on the performance of expanded beds.
    Asghari F; Jahanshahi M
    J Chromatogr A; 2012 Sep; 1257():89-97. PubMed ID: 22920304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient response of a solid-liquid model biological fluidised bed to a step change in fluid superficial velocity.
    Poncelet D; Naveau H; Nyns EJ; Dochain D
    J Chem Technol Biotechnol; 1990; 48(4):439-52. PubMed ID: 1366699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Fluid Dynamics for Fixed Bed Reactor Design.
    Dixon AG; Partopour B
    Annu Rev Chem Biomol Eng; 2020 Jun; 11():109-130. PubMed ID: 32151159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved capillary model for describing the microstructure characteristics, fluid hydrodynamics and breakthrough performance of proteins in cryogel beds.
    Yun J; Jespersen GR; Kirsebom H; Gustavsson PE; Mattiasson B; Galaev IY
    J Chromatogr A; 2011 Aug; 1218(32):5487-97. PubMed ID: 21742336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.
    Moebius F; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023019. PubMed ID: 25215832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the support material addition on the hydrodynamic behavior of an anaerobic expanded granular sludge bed reactor.
    Pérez-Pérez T; Correia GT; Kwong WH; Pereda-Reyes I; Oliva-Merencio D; Zaiat M
    J Environ Sci (China); 2017 Apr; 54():224-230. PubMed ID: 28391933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based operational constraints for fluidised bed crystallisation.
    van Schagen KM; Rietveld LC; Babuska R; Kramer OJ
    Water Res; 2008 Jan; 42(1-2):327-37. PubMed ID: 17709125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dense granular flow around a penetrating object: experiment and hydrodynamic model.
    Seguin A; Bertho Y; Gondret P; Crassous J
    Phys Rev Lett; 2011 Jul; 107(4):048001. PubMed ID: 21867044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid dynamics in capillary and chip electrochromatography.
    Nischang I; Tallarek U
    Electrophoresis; 2007 Feb; 28(4):611-26. PubMed ID: 17253632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between bed heterogeneity, chord length distribution, and longitudinal dispersion in particulate beds.
    Svidrytski A; Hlushkou D; Tallarek U
    J Chromatogr A; 2019 Aug; 1600():167-173. PubMed ID: 31014577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling ordered packed beds of spheres: The importance of bed orientation and the influence of tortuosity on dispersion.
    Dolamore F; Fee C; Dimartino S
    J Chromatogr A; 2018 Jan; 1532():150-160. PubMed ID: 29221867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CFD study of the deep bed filtration mechanism for submicron/nano-particle suspension.
    Tung KL; Chang YL; Lai JY; Chang CH; Chuang CJ
    Water Sci Technol; 2004; 50(12):255-64. PubMed ID: 15686029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.