BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 28086124)

  • 1. An ultrasensitive aptasensor for Ochratoxin A using hexagonal core/shell upconversion nanoparticles as luminophores.
    Dai S; Wu S; Duan N; Chen J; Zheng Z; Wang Z
    Biosens Bioelectron; 2017 May; 91():538-544. PubMed ID: 28086124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins.
    Wu S; Duan N; Ma X; Xia Y; Wang H; Wang Z; Zhang Q
    Anal Chem; 2012 Jul; 84(14):6263-70. PubMed ID: 22816786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer.
    Li H; Sun DE; Liu Y; Liu Z
    Biosens Bioelectron; 2014 May; 55():149-56. PubMed ID: 24373954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer.
    Wang Y; Wei Z; Luo X; Wan Q; Qiu R; Wang S
    Talanta; 2019 Apr; 195():33-39. PubMed ID: 30625551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A test strip for ochratoxin A based on the use of aptamer-modified fluorescence upconversion nanoparticles.
    Wu S; Liu L; Duan N; Wang W; Yu Q; Wang Z
    Mikrochim Acta; 2018 Oct; 185(11):497. PubMed ID: 30291459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistent luminescence nanorod based luminescence resonance energy transfer aptasensor for autofluorescence-free detection of mycotoxin.
    Jiang YY; Zhao X; Chen LJ; Yang C; Yin XB; Yan XP
    Talanta; 2020 Oct; 218():121101. PubMed ID: 32797868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titanium Dioxide Nanoparticles (TiO₂) Quenching Based Aptasensing Platform: Application to Ochratoxin A Detection.
    Sharma A; Hayat A; Mishra RK; Catanante G; Bhand S; Marty JL
    Toxins (Basel); 2015 Sep; 7(9):3771-84. PubMed ID: 26402704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aptamer-modified sensitive nanobiosensors for the specific detection of antibiotics.
    Zhang Y; Duan B; Bao Q; Yang T; Wei T; Wang J; Mao C; Zhang C; Yang M
    J Mater Chem B; 2020 Sep; 8(37):8607-8613. PubMed ID: 32820795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanocap-supported upconversion nanoparticles for fabrication of a solid-phase aptasensor to detect ochratoxin A.
    Kim K; Jo EJ; Lee KJ; Park J; Jung GY; Shin YB; Lee LP; Kim MG
    Biosens Bioelectron; 2020 Feb; 150():111885. PubMed ID: 31759762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Luminescence energy transfer detection of PSA in red region based on Mn2+-enhanced NaYF4:Yb, Er upconversion nanorods.
    Zhang J; Wang S; Gao N; Feng D; Wang L; Chen H
    Biosens Bioelectron; 2015 Oct; 72():282-7. PubMed ID: 25996781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NaYF4:Yb3+/Er3+ nanoparticle-based upconversion luminescence resonance energy transfer sensor for mercury(II) quantification.
    Li H; Wang L
    Analyst; 2013 Mar; 138(5):1589-95. PubMed ID: 23353928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Step LRET Aptasensor for Rapid Mycotoxin Detection.
    Jo EJ; Byun JY; Mun H; Bang D; Son JH; Lee JY; Lee LP; Kim MG
    Anal Chem; 2018 Jan; 90(1):716-722. PubMed ID: 29210570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles.
    Wang M; Hou W; Mi CC; Wang WX; Xu ZR; Teng HH; Mao CB; Xu SK
    Anal Chem; 2009 Nov; 81(21):8783-9. PubMed ID: 19807113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient NIR-to-NIR signal-based LRET system for homogeneous competitive immunoassay.
    Kang D; Lee S; Shin H; Pyun J; Lee J
    Biosens Bioelectron; 2020 Feb; 150():111921. PubMed ID: 31818754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fluorescent DNA Hydrogel Aptasensor Based on the Self-Assembly of Rolling Circle Amplification Products for Sensitive Detection of Ochratoxin A.
    Hao L; Wang W; Shen X; Wang S; Li Q; An F; Wu S
    J Agric Food Chem; 2020 Jan; 68(1):369-375. PubMed ID: 31829586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline.
    Zhang H; Fang C; Wu S; Duan N; Wang Z
    Anal Biochem; 2015 Nov; 489():44-9. PubMed ID: 26302361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of ochratoxin A (OTA) in coffee using chemiluminescence resonance energy transfer (CRET) aptasensor.
    Jo EJ; Mun H; Kim SJ; Shim WB; Kim MG
    Food Chem; 2016 Mar; 194():1102-7. PubMed ID: 26471659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-step, homogeneous and sensitive detection for microRNAs with dual-recognition steps based on luminescence resonance energy transfer (LRET) using upconversion nanoparticles.
    Zhu D; Miao ZY; Hu Y; Zhang XJ
    Biosens Bioelectron; 2018 Feb; 100():475-481. PubMed ID: 28963965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen-Doped Graphene Quantum Dots@SiO2 Nanoparticles as Electrochemiluminescence and Fluorescence Signal Indicators for Magnetically Controlled Aptasensor with Dual Detection Channels.
    Wang C; Qian J; Wang K; Hua M; Liu Q; Hao N; You T; Huang X
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26865-73. PubMed ID: 26524349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe.
    Wang B; Wu Y; Chen Y; Weng B; Xu L; Li C
    Biosens Bioelectron; 2016 Jul; 81():125-130. PubMed ID: 26938491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.