These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 28086148)

  • 1. A comparative study of mechanical properties of fresh and frozen-thawed porcine intervertebral discs in a bioreactor environment.
    Azarnoosh M; Stoffel M; Quack V; Betsch M; Rath B; Tingart M; Markert B
    J Mech Behav Biomed Mater; 2017 May; 69():169-177. PubMed ID: 28086148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frozen storage affects the compressive creep behavior of the porcine intervertebral disc.
    Bass EC; Duncan NA; Hariharan JS; Dusick J; Bueff HU; Lotz JC
    Spine (Phila Pa 1976); 1997 Dec; 22(24):2867-76. PubMed ID: 9431622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration State Throughout Porcine Lumbar Intervertebral Discs: Comparing Fresh and Frozen-Thawed Specimens.
    Morino C; Kait J; Bass CR
    Ann Biomed Eng; 2024 Jul; ():. PubMed ID: 39012562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of cryopreservation in the biomechanical properties of the intervertebral disc.
    Lam SK; Chan SC; Leung VY; Lu WW; Cheung KM; Luk KD
    Eur Cell Mater; 2011 Dec; 22():393-402. PubMed ID: 22179937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of frozen storage on the creep behavior of human intervertebral discs.
    Dhillon N; Bass EC; Lotz JC
    Spine (Phila Pa 1976); 2001 Apr; 26(8):883-8. PubMed ID: 11317110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic compressive properties of human lumbar intervertebral joints: a comparison between fresh and thawed specimens.
    Smeathers JE; Joanes DN
    J Biomech; 1988; 21(5):425-33. PubMed ID: 3417694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of freezing on the biomechanics of the intervertebral disc.
    Gleizes V; Viguier E; Féron JM; Canivet S; Lavaste F
    Surg Radiol Anat; 1998; 20(6):403-7. PubMed ID: 9932324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of multiple freeze-thaw cycles on intervertebral dynamic motion characteristics in the porcine lumbar spine.
    Hongo M; Gay RE; Hsu JT; Zhao KD; Ilharreborde B; Berglund LJ; An KN
    J Biomech; 2008; 41(4):916-20. PubMed ID: 18078942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical properties and thermal characteristics of frozen versus thawed whole bone.
    Brazda IJ; Reeves J; Langohr GDG; Crookshank MC; Schemitsch EH; Zdero R
    Proc Inst Mech Eng H; 2020 Aug; 234(8):874-883. PubMed ID: 32515277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the damage behaviour of porcine intervertebral discs in a bioreactor environment.
    Azarnoosh M; Stoffel M; Markert B
    J Mech Behav Biomed Mater; 2018 Jan; 77():727-733. PubMed ID: 28822738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative permeability of fresh and frozen/thawed porcine buccal mucosa towards various chemical markers.
    van Eyk AD; van der Biijl P
    SADJ; 2006 Jun; 61(5):200-3. PubMed ID: 16892714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of a bioreactor system for dynamic loading and mechanical characterization of whole human intervertebral discs in organ culture.
    Walter BA; Illien-Jünger S; Nasser PR; Hecht AC; Iatridis JC
    J Biomech; 2014 Jun; 47(9):2095-101. PubMed ID: 24725441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cold storage and freezing on the biomechanical properties of swine growth plate explants.
    Ménard AL; Soulisse C; Raymond P; Londono I; Villemure I
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24337235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effect of the Loading Rate on the Full-Field Strain Distribution on the Surface on the Intervertebral Discs.
    Maria Luisa R; Luca C
    J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32601688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of hydration on the stiffness of intervertebral discs in an ovine model.
    Costi JJ; Hearn TC; Fazzalari NL
    Clin Biomech (Bristol); 2002 Jul; 17(6):446-55. PubMed ID: 12135546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment.
    Araújo ÂR; Peixinho N; Pinho AC; Claro JC
    Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frozen storage increases the ultimate compressive load of porcine vertebrae.
    Callaghan JP; McGill SM
    J Orthop Res; 1995 Sep; 13(5):809-12. PubMed ID: 7472761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
    Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN
    Spine J; 2005; 5(1):64-70. PubMed ID: 15653086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.
    Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK
    J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of -80 °C short-term storage on the mechanical response of tricuspid valve leaflets.
    Salinas SD; Clark MM; Amini R
    J Biomech; 2020 Jan; 98():109462. PubMed ID: 31718820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.