BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28086171)

  • 1. Co-pyrolysis mechanism of seaweed polysaccharides and cellulose based on macroscopic experiments and molecular simulations.
    Wang S; Xia Z; Hu Y; He Z; Uzoejinwa BB; Wang Q; Cao B; Xu S
    Bioresour Technol; 2017 Mar; 228():305-314. PubMed ID: 28086171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the monosaccharide composition of water-soluble polysaccharides from Sargassum fusiforme by high performance liquid chromatography/electrospray ionisation mass spectrometry.
    Wu X; Jiang W; Lu J; Yu Y; Wu B
    Food Chem; 2014 Feb; 145():976-83. PubMed ID: 24128572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.
    Wu Z; Wang S; Zhao J; Chen L; Meng H
    Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism for thermal decomposition of cellulose and its main products.
    Shen DK; Gu S
    Bioresour Technol; 2009 Dec; 100(24):6496-504. PubMed ID: 19625184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies.
    Wang S; Guo X; Liang T; Zhou Y; Luo Z
    Bioresour Technol; 2012 Jan; 104():722-8. PubMed ID: 22100230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural elucidation of polysaccharide fractions from brown seaweed Sargassum pallidum.
    Ye H; Zhou C; Li W; Hu B; Wang X; Zeng X
    Carbohydr Polym; 2013 Sep; 97(2):659-64. PubMed ID: 23911498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Pyrolysis of Cellulose and the Effect of a Catalyst on Product Distribution.
    Sun T; Zhang L; Yang Y; Li Y; Ren S; Dong L; Lei T
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic pyrolysis of cellulose with sulfated metal oxides: a promising method for obtaining high yield of light furan compounds.
    Lu Q; Xiong WM; Li WZ; Guo QX; Zhu XF
    Bioresour Technol; 2009 Oct; 100(20):4871-6. PubMed ID: 19473837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model.
    Chen T; Zhang J; Wu J
    Bioresour Technol; 2016 Jul; 211():502-8. PubMed ID: 27035484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of potassium on the pyrolysis of biomass components: Pyrolysis behaviors, product distribution and kinetic characteristics.
    Fan H; Gu J; Wang Y; Yuan H; Chen Y; Luo B
    Waste Manag; 2021 Feb; 121():255-264. PubMed ID: 33388648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactivities of the Popular Edible Brown Seaweed
    Wang X; Huang C; Fu X; Jeon YJ; Mao X; Wang L
    J Agric Food Chem; 2023 Nov; 71(44):16452-16468. PubMed ID: 37876153
    [No Abstract]   [Full Text] [Related]  

  • 12. [Identification of polysaccharide binding materials used in cultural relics by pyrolysis-gas chromatography/mass spectrometry].
    Wang N; Gu A; Qu Y; Lei Y
    Se Pu; 2022 Aug; 40(8):753-762. PubMed ID: 35903843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cascade approach of red macroalgae Gracilaria gracilis sustainable valorization by extraction of phycobiliproteins and pyrolysis of residue.
    Francavilla M; Manara P; Kamaterou P; Monteleone M; Zabaniotou A
    Bioresour Technol; 2015 May; 184():305-313. PubMed ID: 25465784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere.
    Zhang J; Chen T; Wu J; Wu J
    Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury release behaviors of Guizhou bituminous coal during co-pyrolysis: Influence of chlorella.
    Zhang H; Zhou Y; Liu T; Tian X; Zhang Y; Wang J; Zhang M; Phoutthavong T; Liang P
    J Environ Sci (China); 2022 Sep; 119():23-32. PubMed ID: 35934462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermogravimetric characteristics and pyrolysis kinetics of alga Sagarssum sp. biomass.
    Kim SS; Ly HV; Kim J; Choi JH; Woo HC
    Bioresour Technol; 2013 Jul; 139():242-8. PubMed ID: 23665684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and pyrolysis characteristics of lignin derived from wood powder hydrolysis residues.
    Zhang B; Yin X; Wu C; Qiu Z; Wang C; Huang Y; Ma L; Wu S
    Appl Biochem Biotechnol; 2012 Sep; 168(1):37-46. PubMed ID: 21603951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. At-Line Sampling and Characterization of Pyrolytic Vapors from Biomass Feedstock Blends Using SPME-GC/MS-PCA: Influence of Char on Fast Pyrolysis.
    Reyes Molina EA; Soneja R; Herrera Diaz M; Tilotta DC; Kelley SS
    J Agric Food Chem; 2022 Dec; 70(49):15509-15516. PubMed ID: 36465059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Products distribution and interaction mechanism during co-pyrolysis of rice husk and oily sludge by experiments and reaction force field simulation.
    Wen Y; Xie Y; Jiang C; Li W; Hou Y
    Bioresour Technol; 2021 Jun; 329():124822. PubMed ID: 33631453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on catalytic co-pyrolysis of kitchen waste with tire waste over ZSM-5 using TG-FTIR and Py-GC/MS.
    Chen J; Ma X; Yu Z; Deng T; Chen X; Chen L; Dai M
    Bioresour Technol; 2019 Oct; 289():121585. PubMed ID: 31207410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.