BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 28086193)

  • 1. Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress.
    Griesser E; Vemula V; Raulien N; Wagner U; Reeg S; Grune T; Fedorova M
    Redox Biol; 2017 Apr; 11():438-455. PubMed ID: 28086193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome-wide profiling of carbonylated proteins and carbonylation sites in HeLa cells under mild oxidative stress conditions.
    Bollineni RC; Hoffmann R; Fedorova M
    Free Radic Biol Med; 2014 Mar; 68():186-95. PubMed ID: 24321318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress and lipotoxicity.
    Hauck AK; Bernlohr DA
    J Lipid Res; 2016 Nov; 57(11):1976-1986. PubMed ID: 27009116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of inhibition of the autophagy-lysosomal pathway on biomolecules carbonylation and proteome regulation in rat cardiac cells.
    Coliva G; Duarte S; Pérez-Sala D; Fedorova M
    Redox Biol; 2019 May; 23():101123. PubMed ID: 30737170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein and lipid carbonylation in cellular model of nitrosative stress: mass spectrometry, biochemistry and microscopy study.
    Fedorova M; Griesser E; Vemula V; Weber D; Ni Z; Hoffmann R
    Free Radic Biol Med; 2014 Oct; 75 Suppl 1():S15. PubMed ID: 26461293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated Nrf-2 responses are insufficient to mitigate protein carbonylation in hepatospecific PTEN deletion mice.
    Petersen DR; Saba LM; Sayin VI; Papagiannakopoulos T; Schmidt EE; Merrill GF; Orlicky DJ; Shearn CT
    PLoS One; 2018; 13(5):e0198139. PubMed ID: 29799837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of carbonylated lipids from different phospholipid classes by shotgun and LC-MS lipidomics.
    Ni Z; Milic I; Fedorova M
    Anal Bioanal Chem; 2015 Jul; 407(17):5161-73. PubMed ID: 25701423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of Protein Carbonylation and Proteasome Activity in Seeds.
    Xia Q; El-Maarouf-Bouteau H; Bailly C; Meimoun P
    Methods Mol Biol; 2016; 1450():205-12. PubMed ID: 27424756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between protein carbonylation and nitrosylation in plants.
    Lounifi I; Arc E; Molassiotis A; Job D; Rajjou L; Tanou G
    Proteomics; 2013 Feb; 13(3-4):568-78. PubMed ID: 23034931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doxorubicin-induced carbonylation and degradation of cardiac myosin binding protein C promote cardiotoxicity.
    Aryal B; Jeong J; Rao VA
    Proc Natl Acad Sci U S A; 2014 Feb; 111(5):2011-6. PubMed ID: 24449919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes.
    Anavi S; Ni Z; Tirosh O; Fedorova M
    Redox Biol; 2015; 4():158-68. PubMed ID: 25560244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive carbonyl species: their production from lipid peroxides, action in environmental stress, and the detoxification mechanism.
    Mano J
    Plant Physiol Biochem; 2012 Oct; 59():90-7. PubMed ID: 22578669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dibromoacetonitrile-induced protein oxidation and inhibition of proteasomal activity in rat glioma cells.
    Ahmed AE; Jacob S; Nagy AA; Abdel-Naim AB
    Toxicol Lett; 2008 Jun; 179(1):29-33. PubMed ID: 18485629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipoxidation-derived reactive carbonyl species as potential drug targets in preventing protein carbonylation and related cellular dysfunction.
    Aldini G; Dalle-Donne I; Colombo R; Maffei Facino R; Milzani A; Carini M
    ChemMedChem; 2006 Oct; 1(10):1045-58. PubMed ID: 16915603
    [No Abstract]   [Full Text] [Related]  

  • 15. Proteomic identification of carbonylated proteins and their oxidation sites.
    Madian AG; Regnier FE
    J Proteome Res; 2010 Aug; 9(8):3766-80. PubMed ID: 20521848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive nitrogen species induce nuclear factor-kappaB-mediated protein degradation in skeletal muscle cells.
    Bar-Shai M; Reznick AZ
    Free Radic Biol Med; 2006 Jun; 40(12):2112-25. PubMed ID: 16785025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of oxidatively modified proteins in salt-stressed Arabidopsis: a carbonyl-targeted proteomics approach.
    Mano J; Nagata M; Okamura S; Shiraya T; Mitsui T
    Plant Cell Physiol; 2014 Jul; 55(7):1233-44. PubMed ID: 24850833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the effects of antioxidants on oxidative stress induced carbonylation of proteins.
    Madian AG; Myracle AD; Diaz-Maldonado N; Rochelle NS; Janle EM; Regnier FE
    Anal Chem; 2011 Dec; 83(24):9328-36. PubMed ID: 21939227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced plasma protein carbonylation in patients with myelodysplastic syndromes.
    Hlaváčková A; Štikarová J; Pimková K; Chrastinová L; Májek P; Kotlín R; Čermák J; Suttnar J; Dyr JE
    Free Radic Biol Med; 2017 Jul; 108():1-7. PubMed ID: 28300669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive Oxygen and Nitrogen Species-Induced Protein Modifications: Implication in Carcinogenesis and Anticancer Therapy.
    Moldogazieva NT; Lutsenko SV; Terentiev AA
    Cancer Res; 2018 Nov; 78(21):6040-6047. PubMed ID: 30327380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.