These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 28086779)
1. The effect of electrical conductivity of myocardium on cardiac pumping efficacy: a computational study. Yuniarti AR; Lim KM Biomed Eng Online; 2017 Jan; 16(1):11. PubMed ID: 28086779 [TBL] [Abstract][Full Text] [Related]
2. The effect of myocardial action potential duration on cardiac pumping efficacy: a computational study. Jeong DU; Lim KM Biomed Eng Online; 2018 Jun; 17(1):79. PubMed ID: 29907152 [TBL] [Abstract][Full Text] [Related]
3. Computational prediction of the effect of D172N KCNJ2 mutation on ventricular pumping during sinus rhythm and reentry. Heikhmakhtiar AK; Lee CH; Song KS; Lim KM Med Biol Eng Comput; 2020 May; 58(5):977-990. PubMed ID: 32095980 [TBL] [Abstract][Full Text] [Related]
4. Effect of myocardial heterogeneity on ventricular electro-mechanical responses: a computational study. Dusturia N; Choi SW; Song KS; Lim KM Biomed Eng Online; 2019 Mar; 18(1):23. PubMed ID: 30871548 [TBL] [Abstract][Full Text] [Related]
5. Computational prediction of the effects of the intra-aortic balloon pump on heart failure with valvular regurgitation using a 3D cardiac electromechanical model. Kim CH; Song KS; Trayanova NA; Lim KM Med Biol Eng Comput; 2018 May; 56(5):853-863. PubMed ID: 29058110 [TBL] [Abstract][Full Text] [Related]
6. An anatomical heart model with applications to myocardial activation and ventricular mechanics. Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783 [TBL] [Abstract][Full Text] [Related]
7. A framework for biomechanics simulations using four-chamber cardiac models. Jafari A; Pszczolkowski E; Krishnamurthy A J Biomech; 2019 Jun; 91():92-101. PubMed ID: 31155211 [TBL] [Abstract][Full Text] [Related]
8. Mechanical enhancement and myocardial oxygen saving by synchronized dynamic left ventricular compression. Kawaguchi O; Goto Y; Futaki S; Ohgoshi Y; Yaku H; Suga H J Thorac Cardiovasc Surg; 1992 Mar; 103(3):573-81. PubMed ID: 1545558 [TBL] [Abstract][Full Text] [Related]
9. Pumping Function of Heart Ventricles in Different Mammalian Species under Conditions of Electrical Cardiostimulation. Kibler NA; Nuzhny VP; Nuzhny PV; Rogachevskaya OV Bull Exp Biol Med; 2018 Mar; 164(4):409-412. PubMed ID: 29500806 [TBL] [Abstract][Full Text] [Related]
10. Myofiber prestretch magnitude determines regional systolic function during ectopic activation in the tachycardia-induced failing canine heart. Howard EJ; Kerckhoffs RC; Vincent KP; Krishnamurthy A; Villongco CT; Mulligan LJ; McCulloch AD; Omens JH Am J Physiol Heart Circ Physiol; 2013 Jul; 305(2):H192-202. PubMed ID: 23666676 [TBL] [Abstract][Full Text] [Related]
11. Myocardial oxygen consumption of fibrillating ventricle in hypothermia. Successful account by new mechanical indexes--equivalent pressure-volume area and equivalent heart rate. Yaku H; Goto Y; Futaki S; Ohgoshi Y; Kawaguchi O; Suga H J Thorac Cardiovasc Surg; 1992 Aug; 104(2):364-73. PubMed ID: 1495298 [TBL] [Abstract][Full Text] [Related]
13. Models of cardiac electromechanics based on individual hearts imaging data: image-based electromechanical models of the heart. Gurev V; Lee T; Constantino J; Arevalo H; Trayanova NA Biomech Model Mechanobiol; 2011 Jun; 10(3):295-306. PubMed ID: 20589408 [TBL] [Abstract][Full Text] [Related]
14. Myocardial infarction does not preclude electrical and hemodynamic benefits of cardiac resynchronization therapy in dyssynchronous canine hearts. Rademakers LM; van Kerckhoven R; van Deursen CJ; Strik M; van Hunnik A; Kuiper M; Lampert A; Klersy C; Leyva F; Auricchio A; Maessen JG; Prinzen FW Circ Arrhythm Electrophysiol; 2010 Aug; 3(4):361-8. PubMed ID: 20495014 [TBL] [Abstract][Full Text] [Related]
15. Computational Study to Identify the Effects of the KCNJ2 E299V Mutation in Cardiac Pumping Capacity. Jeong DU; Lee J; Lim KM Comput Math Methods Med; 2020; 2020():7194275. PubMed ID: 32328155 [TBL] [Abstract][Full Text] [Related]
16. Relationship between regional shortening and asynchronous electrical activation in a three-dimensional model of ventricular electromechanics. Usyk TP; McCulloch AD J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S196-202. PubMed ID: 14760924 [TBL] [Abstract][Full Text] [Related]
17. Prediction of the mechanical response of cardiac alternans by using an electromechanical model of human ventricular myocytes. Park JI; Lim KM Biomed Eng Online; 2019 Jun; 18(1):72. PubMed ID: 31174533 [TBL] [Abstract][Full Text] [Related]
18. Left ventricular mechanoenergetics during asynchronous left atrial-to-aortic bypass. Effects of pumping rate on cardiac workload and myocardial oxygen consumption. Kawaguchi O; Pae WE; Daily WB; Sapirstein JS; Pierce WS J Thorac Cardiovasc Surg; 1995 Sep; 110(3):793-9. PubMed ID: 7564448 [TBL] [Abstract][Full Text] [Related]
19. Valveless pumping behavior of the simulated embryonic heart tube as a function of contractile patterns and myocardial stiffness. Sharifi A; Gendernalik A; Garrity D; Bark D Biomech Model Mechanobiol; 2021 Oct; 20(5):2001-2012. PubMed ID: 34297252 [TBL] [Abstract][Full Text] [Related]
20. Mechanical analysis of congestive heart failure caused by bundle branch block based on an electromechanical canine heart model. Dou J; Xia L; Zhang Y; Shou G; Wei Q; Liu F; Crozier S Phys Med Biol; 2009 Jan; 54(2):353-71. PubMed ID: 19098354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]