These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 28086798)
1. Genome-wide association analysis of seedling traits in diverse Sorghum germplasm under thermal stress. Chopra R; Burow G; Burke JJ; Gladman N; Xin Z BMC Plant Biol; 2017 Jan; 17(1):12. PubMed ID: 28086798 [TBL] [Abstract][Full Text] [Related]
2. Genome-Wide Association Study of Developing Leaves' Heat Tolerance during Vegetative Growth Stages in a Sorghum Association Panel. Chen J; Chopra R; Hayes C; Morris G; Marla S; Burke J; Xin Z; Burow G Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724078 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress. Chopra R; Burow G; Hayes C; Emendack Y; Xin Z; Burke J BMC Genomics; 2015 Dec; 16():1040. PubMed ID: 26645959 [TBL] [Abstract][Full Text] [Related]
4. Genetic dissection of early-season cold tolerance in sorghum: genome-wide association studies for seedling emergence and survival under field and controlled environment conditions. Parra-Londono S; Fiedler K; Kavka M; Samans B; Wieckhorst S; Zacharias A; Uptmoor R Theor Appl Genet; 2018 Mar; 131(3):581-595. PubMed ID: 29147737 [TBL] [Abstract][Full Text] [Related]
5. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection. Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716 [TBL] [Abstract][Full Text] [Related]
6. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement. Cuevas HE; Rosa-Valentin G; Hayes CM; Rooney WL; Hoffmann L BMC Genomics; 2017 Jan; 18(1):108. PubMed ID: 28125967 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide association study for seedling heat tolerance under two temperature conditions in bread wheat (Triticum aestivum L.). Fu C; Zhou Y; Liu A; Chen R; Yin L; Li C; Mao H BMC Plant Biol; 2024 May; 24(1):430. PubMed ID: 38773371 [TBL] [Abstract][Full Text] [Related]
8. Genome-Wide Association Studies of Grain Yield Components in Diverse Sorghum Germplasm. Boyles RE; Cooper EA; Myers MT; Brenton Z; Rauh BL; Morris GP; Kresovich S Plant Genome; 2016 Jul; 9(2):. PubMed ID: 27898823 [TBL] [Abstract][Full Text] [Related]
9. Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches. Prasad VBR; Govindaraj M; Djanaguiraman M; Djalovic I; Shailani A; Rawat N; Singla-Pareek SL; Pareek A; Prasad PVV Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575989 [TBL] [Abstract][Full Text] [Related]
10. Genetic diversity of Ethiopian sorghum reveals signatures of climatic adaptation. Menamo T; Kassahun B; Borrell AK; Jordan DR; Tao Y; Hunt C; Mace E Theor Appl Genet; 2021 Feb; 134(2):731-742. PubMed ID: 33341904 [TBL] [Abstract][Full Text] [Related]
11. Genomic Signatures of Adaptation to a Precipitation Gradient in Nigerian Sorghum. Olatoye MO; Hu Z; Maina F; Morris GP G3 (Bethesda); 2018 Oct; 8(10):3269-3281. PubMed ID: 30097471 [TBL] [Abstract][Full Text] [Related]
12. Identification of Genomic Regions Associated with Seedling Frost Tolerance in Sorghum. Borde N; Dweikat I Genes (Basel); 2023 Nov; 14(12):. PubMed ID: 38136939 [No Abstract] [Full Text] [Related]
13. Genome-wide association study reveals that different pathways contribute to grain quality variation in sorghum (Sorghum bicolor). Kimani W; Zhang LM; Wu XY; Hao HQ; Jing HC BMC Genomics; 2020 Jan; 21(1):112. PubMed ID: 32005168 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection. Cuevas HE; Prom LK BMC Genomics; 2020 Jan; 21(1):88. PubMed ID: 31992189 [TBL] [Abstract][Full Text] [Related]
15. Integration of Experiments across Diverse Environments Identifies the Genetic Determinants of Variation in Sorghum bicolor Seed Element Composition. Shakoor N; Ziegler G; Dilkes BP; Brenton Z; Boyles R; Connolly EL; Kresovich S; Baxter I Plant Physiol; 2016 Apr; 170(4):1989-98. PubMed ID: 26896393 [TBL] [Abstract][Full Text] [Related]
16. Genetic architecture of kernel composition in global sorghum germplasm. Rhodes DH; Hoffmann L; Rooney WL; Herald TJ; Bean S; Boyles R; Brenton ZW; Kresovich S BMC Genomics; 2017 Jan; 18(1):15. PubMed ID: 28056770 [TBL] [Abstract][Full Text] [Related]
17. Seedling development traits in Brassica napus examined by gene expression analysis and association mapping. Körber N; Bus A; Li J; Higgins J; Bancroft I; Higgins EE; Parkin IA; Salazar-Colqui B; Snowdon RJ; Stich B BMC Plant Biol; 2015 Jun; 15():136. PubMed ID: 26055390 [TBL] [Abstract][Full Text] [Related]
18. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Morris GP; Ramu P; Deshpande SP; Hash CT; Shah T; Upadhyaya HD; Riera-Lizarazu O; Brown PJ; Acharya CB; Mitchell SE; Harriman J; Glaubitz JC; Buckler ES; Kresovich S Proc Natl Acad Sci U S A; 2013 Jan; 110(2):453-8. PubMed ID: 23267105 [TBL] [Abstract][Full Text] [Related]
19. Association mapping by aerial drone reveals 213 genetic associations for Sorghum bicolor biomass traits under drought. Spindel JE; Dahlberg J; Colgan M; Hollingsworth J; Sievert J; Staggenborg SH; Hutmacher R; Jansson C; Vogel JP BMC Genomics; 2018 Sep; 19(1):679. PubMed ID: 30223789 [TBL] [Abstract][Full Text] [Related]
20. Increased Power To Dissect Adaptive Traits in Global Sorghum Diversity Using a Nested Association Mapping Population. Bouchet S; Olatoye MO; Marla SR; Perumal R; Tesso T; Yu J; Tuinstra M; Morris GP Genetics; 2017 Jun; 206(2):573-585. PubMed ID: 28592497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]