These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 28086909)

  • 1. Fast detection and data compensation for electrodes disconnection in long-term monitoring of dynamic brain electrical impedance tomography.
    Zhang G; Dai M; Yang L; Li W; Li H; Xu C; Shi X; Dong X; Fu F
    Biomed Eng Online; 2017 Jan; 16(1):7. PubMed ID: 28086909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time management of faulty electrodes in electrical impedance tomography.
    Hartinger AE; Guardo R; Adler A; Gagnon H
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):369-77. PubMed ID: 19272943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An on-line processing strategy for head movement interferences removal of dynamic brain electrical impedance tomography based on wavelet decomposition.
    Zhang G; Li W; Ma H; Liu X; Dai M; Xu C; Li H; Dong X; Sun X; Fu F
    Biomed Eng Online; 2019 May; 18(1):55. PubMed ID: 31072348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Managing erroneous measurements of dynamic brain electrical impedance tomography after reconnection of faulty electrodes.
    Li H; Liu X; Xu C; Yang B; Fu D; Dong X; Fu F
    Physiol Meas; 2020 Apr; 41(3):035002. PubMed ID: 32000152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensation for Electrode Detachment in Electrical Impedance Tomography with Wearable Textile Electrodes.
    Hu CL; Lin ZY; Hu SY; Cheng IC; Huang CH; Li YH; Li CJ; Lin CW
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible electrode belt for EIT using nanofiber web dry electrodes.
    Oh TI; Kim TE; Yoon S; Kim KJ; Woo EJ; Sadleir RJ
    Physiol Meas; 2012 Oct; 33(10):1603-16. PubMed ID: 22945587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging of conductivity changes and electrode movement in EIT.
    Soleimani M; Gómez-Laberge C; Adler A
    Physiol Meas; 2006 May; 27(5):S103-13. PubMed ID: 16636402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance evaluation of five types of Ag/AgCl bio-electrodes for cerebral electrical impedance tomography.
    Xu S; Dai M; Xu C; Chen C; Tang M; Shi X; Dong X
    Ann Biomed Eng; 2011 Jul; 39(7):2059-67. PubMed ID: 21455793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of conductivity changes and electrode movements based on EIT temporal sequences.
    Dai T; Gómez-Laberge C; Adler A
    Physiol Meas; 2008 Jun; 29(6):S77-88. PubMed ID: 18544802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking boundary movement and exterior shape modelling in lung EIT imaging.
    Biguri A; Grychtol B; Adler A; Soleimani M
    Physiol Meas; 2015 Jun; 36(6):1119-35. PubMed ID: 26007150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for calculating the electrode position Jacobian for impedance imaging.
    Boyle A; Crabb MG; Jehl M; Lionheart WR; Adler A
    Physiol Meas; 2017 Mar; 38(3):555-574. PubMed ID: 28114109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of different stimulation and measurement patterns based on internal electrode: application in cardiac impedance tomography.
    Nasehi Tehrani J; Oh TI; Jin C; Thiagalingam A; McEwan A
    Comput Biol Med; 2012 Nov; 42(11):1122-32. PubMed ID: 23017828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison framework for temporal image reconstructions in electrical impedance tomography.
    Gagnon H; Grychtol B; Adler A
    Physiol Meas; 2015 Jun; 36(6):1093-107. PubMed ID: 26006181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic detection of detached and erroneous electrodes in electrical impedance tomography.
    Asfaw Y; Adler A
    Physiol Meas; 2005 Apr; 26(2):S175-83. PubMed ID: 15798230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape deformation in two-dimensional electrical impedance tomography.
    Boyle A; Adler A; Lionheart WR
    IEEE Trans Med Imaging; 2012 Dec; 31(12):2185-93. PubMed ID: 22711769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the optimum level of electrode placement for the evaluation of absolute lung resistivity with the Mk3.5 EIT system.
    Nebuya S; Noshiro M; Yonemoto A; Tateno S; Brown BH; Smallwood RH; Milnes P
    Physiol Meas; 2006 May; 27(5):S129-37. PubMed ID: 16636404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal combination of electrodes and conductive gels for brain electrical impedance tomography.
    Yang L; Li H; Ding J; Li W; Dong X; Wen Z; Shi X
    Biomed Eng Online; 2018 Dec; 17(1):186. PubMed ID: 30572888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current approaches to analogue instrumentation design in electrical impedance tomography.
    Boone KG; Holder DS
    Physiol Meas; 1996 Nov; 17(4):229-47. PubMed ID: 8953622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple method to check the dynamic performance of electrical impedance tomography systems.
    Hahn G; Beer M; Frerichs I; Dudykevych T; Schröder T; Hellige G
    Physiol Meas; 2000 Feb; 21(1):53-60. PubMed ID: 10719999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical impedance tomography with compensation for electrode positioning variations.
    Blott BH; Daniell GJ; Meeson S
    Phys Med Biol; 1998 Jun; 43(6):1731-9. PubMed ID: 9651036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.