BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28087334)

  • 1. The short- and long-term proteomic effects of sleep deprivation on the cortical and thalamic synapses.
    Simor A; Györffy BA; Gulyássy P; Völgyi K; Tóth V; Todorov MI; Kis V; Borhegyi Z; Szabó Z; Janáky T; Drahos L; Juhász G; Kékesi KA
    Mol Cell Neurosci; 2017 Mar; 79():64-80. PubMed ID: 28087334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Sleep Deprivation and Subsequent Recovery Period on the Synaptic Proteome of Rat Cerebral Cortex.
    Gulyássy P; Todorov-Völgyi K; Tóth V; Györffy BA; Puska G; Simor A; Juhász G; Drahos L; Kékesi KA
    Mol Neurobiol; 2022 Feb; 59(2):1301-1319. PubMed ID: 34988919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep deprivation-induced protein changes in basal forebrain: implications for synaptic plasticity.
    Basheer R; Brown R; Ramesh V; Begum S; McCarley RW
    J Neurosci Res; 2005 Dec; 82(5):650-8. PubMed ID: 16273548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic sleep deprivation-induced proteome changes in astrocytes of the rat hypothalamus.
    Kim JH; Kim JH; Cho YE; Baek MC; Jung JY; Lee MG; Jang IS; Lee HW; Suk K
    J Proteome Res; 2014 Sep; 13(9):4047-61. PubMed ID: 25087458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following prenatal immune activation in rats.
    Györffy BA; Gulyássy P; Gellén B; Völgyi K; Madarasi D; Kis V; Ozohanics O; Papp I; Kovács P; Lubec G; Dobolyi Á; Kardos J; Drahos L; Juhász G; Kékesi KA
    Brain Behav Immun; 2016 Aug; 56():289-309. PubMed ID: 27058163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sleep Loss Promotes Astrocytic Phagocytosis and Microglial Activation in Mouse Cerebral Cortex.
    Bellesi M; de Vivo L; Chini M; Gilli F; Tononi G; Cirelli C
    J Neurosci; 2017 May; 37(21):5263-5273. PubMed ID: 28539349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic Cerebral Hypoperfusion Induced Synaptic Proteome Changes in the rat Cerebral Cortex.
    Völgyi K; Gulyássy P; Todorov MI; Puska G; Badics K; Hlatky D; Kékesi KA; Nyitrai G; Czurkó A; Drahos L; Dobolyi A
    Mol Neurobiol; 2018 May; 55(5):4253-4266. PubMed ID: 28620701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of rat serum revealed the effects of chronic sleep deprivation on metabolic, cardiovascular and nervous system.
    Ma B; Chen J; Mu Y; Xue B; Zhao A; Wang D; Chang D; Pan Y; Liu J
    PLoS One; 2018; 13(9):e0199237. PubMed ID: 30235220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in anti-phosphoserine and anti-phosphothreonine antibody binding during the sleep-waking cycle and after lesions of the locus coeruleus.
    Cirelli C; Tononi G
    Sleep Res Online; 1998; 1(1):11-8. PubMed ID: 11382852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered NMDA receptor trafficking contributes to sleep deprivation-induced hippocampal synaptic and cognitive impairments.
    Chen C; Hardy M; Zhang J; LaHoste GJ; Bazan NG
    Biochem Biophys Res Commun; 2006 Feb; 340(2):435-40. PubMed ID: 16376302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII.
    Zhang L; Zhang HQ; Liang XY; Zhang HF; Zhang T; Liu FE
    Behav Brain Res; 2013 Nov; 256():72-81. PubMed ID: 23933144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The proteomic landscape of synaptic diversity across brain regions and cell types.
    van Oostrum M; Blok TM; Giandomenico SL; Tom Dieck S; Tushev G; Fürst N; Langer JD; Schuman EM
    Cell; 2023 Nov; 186(24):5411-5427.e23. PubMed ID: 37918396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topological reorganizations of mitochondria isolated from rat brain after 72 hours of paradoxical sleep deprivation, revealed by electron cryo-tomography.
    Lu Z; Hu Y; Wang Y; Zhang T; Long J; Liu J
    Am J Physiol Cell Physiol; 2021 Jul; 321(1):C17-C25. PubMed ID: 33979213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative phosphoproteomic analysis of the molecular substrates of sleep need.
    Wang Z; Ma J; Miyoshi C; Li Y; Sato M; Ogawa Y; Lou T; Ma C; Gao X; Lee C; Fujiyama T; Yang X; Zhou S; Hotta-Hirashima N; Klewe-Nebenius D; Ikkyu A; Kakizaki M; Kanno S; Cao L; Takahashi S; Peng J; Yu Y; Funato H; Yanagisawa M; Liu Q
    Nature; 2018 Jun; 558(7710):435-439. PubMed ID: 29899451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of coffee bean aroma on the rat brain stressed by sleep deprivation: a selected transcript- and 2D gel-based proteome analysis.
    Seo HS; Hirano M; Shibato J; Rakwal R; Hwang IK; Masuo Y
    J Agric Food Chem; 2008 Jun; 56(12):4665-73. PubMed ID: 18517217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of long-term sleep deprivation on the long-term potentiation in the dentate gyrus and brain oxidation status in rats.
    Süer C; Dolu N; Artis AS; Sahin L; Yilmaz A; Cetin A
    Neurosci Res; 2011 May; 70(1):71-7. PubMed ID: 21256900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic proteome changes in the hypothalamus of mother rats.
    Udvari EB; Völgyi K; Gulyássy P; Dimén D; Kis V; Barna J; Szabó ÉR; Lubec G; Juhász G; Kékesi KA; Dobolyi Á
    J Proteomics; 2017 Apr; 159():54-66. PubMed ID: 28286321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid eye movement sleep deprivation in post-critical period, adolescent rats alters the balance between inhibitory and excitatory mechanisms in visual cortex.
    Shaffery JP; Lopez J; Bissette G; Roffwarg HP
    Neurosci Lett; 2006 Jan; 393(2-3):131-5. PubMed ID: 16236445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated metabolomics and proteomics analysis reveals energy metabolism disorders in the livers of sleep-deprived mice.
    Hu S; Li P; Zhang R; Liu X; Wei S
    J Proteomics; 2021 Aug; 245():104290. PubMed ID: 34089895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural (N)-cadherin at developing thalamocortical synapses provides an adhesion mechanism for the formation of somatopically organized connections.
    Huntley GW; Benson DL
    J Comp Neurol; 1999 May; 407(4):453-71. PubMed ID: 10235639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.