These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

797 related articles for article (PubMed ID: 28087415)

  • 1. Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis.
    Rohani SA; Ghomashchi S; Agrawal SK; Ladak HM
    Hear Res; 2017 Mar; 345():69-78. PubMed ID: 28087415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the quasi-static Young's modulus of the eardrum using an indentation technique.
    Hesabgar SM; Marshall H; Agrawal SK; Samani A; Ladak HM
    Hear Res; 2010 May; 263(1-2):168-76. PubMed ID: 20146934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the quasi-static Young's modulus of the eardrum using a pressurization technique.
    Ghadarghadar N; Agrawal SK; Samani A; Ladak HM
    Comput Methods Programs Biomed; 2013 Jun; 110(3):231-9. PubMed ID: 23270964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus.
    Aernouts J; Dirckx JJ
    Biomech Model Mechanobiol; 2012 Jul; 11(6):829-40. PubMed ID: 22038402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements.
    Aernouts J; Aerts JR; Dirckx JJ
    Hear Res; 2012 Aug; 290(1-2):45-54. PubMed ID: 22583920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the Young's modulus distribution of the human tympanic membrane by microindentation.
    Luo H; Wang F; Cheng C; Nakmali DU; Gan RZ; Lu H
    Hear Res; 2019 Jul; 378():75-91. PubMed ID: 30853348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-Element Modelling of the Response of the Gerbil Middle Ear to Sound.
    Maftoon N; Funnell WR; Daniel SJ; Decraemer WF
    J Assoc Res Otolaryngol; 2015 Oct; 16(5):547-67. PubMed ID: 26197870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of young's modulus of human tympanic membrane at high strain rates.
    Luo H; Dai C; Gan RZ; Lu H
    J Biomech Eng; 2009 Jun; 131(6):064501. PubMed ID: 19449971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation.
    Daphalapurkar NP; Dai C; Gan RZ; Lu H
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):82-92. PubMed ID: 19627811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-frequency finite-element modeling of the gerbil middle ear.
    Elkhouri N; Liu H; Funnell WR
    J Assoc Res Otolaryngol; 2006 Dec; 7(4):399-411. PubMed ID: 17043944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the nonlinear elastic behavior of chinchilla tympanic membrane using micro-fringe projection.
    Liang J; Luo H; Yokell Z; Nakmali DU; Gan RZ; Lu H
    Hear Res; 2016 Sep; 339():1-11. PubMed ID: 27240479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
    Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ
    J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic characterization of the gerbil pars flaccida from in situ inflation experiments.
    Aernouts J; Dirckx JJ
    Biomech Model Mechanobiol; 2011 Oct; 10(5):727-41. PubMed ID: 21069415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apparent Young's modulus of vertebral cortico-cancellous bone specimens.
    El Masri F; Sapin de Brosses E; Rhissassi K; Skalli W; Mitton D
    Comput Methods Biomech Biomed Engin; 2012; 15(1):23-8. PubMed ID: 21749276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears.
    Gaihede M; Liao D; Gregersen H
    Phys Med Biol; 2007 Feb; 52(3):803-14. PubMed ID: 17228122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of age-related tympanic-membrane material properties on sound transmission in the middle ear in a three-dimensional finite-element model.
    Yu YC; Wang TC; Shih TC
    Comput Methods Programs Biomed; 2022 Mar; 215():106619. PubMed ID: 35038652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the transverse Young's modulus of maize rind and pith tissues.
    Stubbs CJ; Sun W; Cook DD
    J Biomech; 2019 Feb; 84():113-120. PubMed ID: 30635117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechano-acoustic determination of Young's modulus of articular cartilage.
    Saarakkala S; Korhonen RK; Laasanen MS; Töyräs J; Rieppo J; Jurvelin JS
    Biorheology; 2004; 41(3-4):167-79. PubMed ID: 15299250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between the Young's modulus of the stratum corneum and age: a pilot study.
    Hara Y; Masuda Y; Hirao T; Yoshikawa N
    Skin Res Technol; 2013 Aug; 19(3):339-45. PubMed ID: 23551131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscale's relationship between Young's modulus and tissue density. Prediction of displacements.
    Cyganik Ł; Binkowski M; Kokot G; Cyganik P; Rusin T; Bolechała F; Nowak R; Wróbel Z; John A
    Comput Methods Biomech Biomed Engin; 2017 Dec; 20(16):1658-1668. PubMed ID: 29169266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.