BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28087445)

  • 1. Distinct subcomponents of mouse retinal ganglion cell receptive fields are differentially altered by light adaptation.
    Cowan CS; Sabharwal J; Seilheimer RL; Wu SM
    Vision Res; 2017 Feb; 131():96-105. PubMed ID: 28087445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic dissection of rod and cone pathways mediating light responses and receptive fields of ganglion cells in the mouse retina.
    Seilheimer RL; Sabharwal J; Wu SM
    Vision Res; 2020 Feb; 167():15-23. PubMed ID: 31887538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ON Crossover Circuitry Shapes Spatiotemporal Profile in the Center and Surround of Mouse OFF Retinal Ganglion Cells.
    Sabharwal J; Seilheimer RL; Cowan CS; Wu SM
    Front Neural Circuits; 2016; 10():106. PubMed ID: 28066192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat.
    Derrington AM; Lennie P
    J Physiol; 1982 Dec; 333():343-66. PubMed ID: 7182469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Space-time codependence of retinal ganglion cells can be explained by novel and separable components of their receptive fields.
    Cowan CS; Sabharwal J; Wu SM
    Physiol Rep; 2016 Sep; 4(17):. PubMed ID: 27604400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal ganglion cells--spatial organization of the receptive field reduces temporal redundancy.
    Tokutake Y; Freed MA
    Eur J Neurosci; 2008 Sep; 28(5):914-23. PubMed ID: 18691326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial properties of the cat X-cell receptive field as a function of mean light level.
    Troy JB; Bohnsack DL; Diller LC
    Vis Neurosci; 1999; 16(6):1089-104. PubMed ID: 10614589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of light-adaptive mechanisms on mammalian retinal visual encoding at high light levels.
    Borghuis BG; Ratliff CP; Smith RG
    J Neurophysiol; 2018 Apr; 119(4):1437-1449. PubMed ID: 29357459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells.
    Khani MH; Gollisch T
    J Neurophysiol; 2017 Dec; 118(6):3024-3043. PubMed ID: 28904106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Symmetry breakdown in the ON and OFF pathways of the retina at night: functional implications.
    Pandarinath C; Victor JD; Nirenberg S
    J Neurosci; 2010 Jul; 30(30):10006-14. PubMed ID: 20668185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for the receptive field of retinal ganglion cells.
    Cho MW; Choi MY
    Neural Netw; 2014 Jan; 49():51-8. PubMed ID: 24129224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of remote stimulation on the modulated activity of cat retinal ganglion cells.
    Passaglia CL; Freeman DK; Troy JB
    J Neurosci; 2009 Feb; 29(8):2467-76. PubMed ID: 19244521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal integration of light by the cat X-cell center under photopic and scotopic conditions.
    Troy JB; Bohnsack DL; Chen J; Guo X; Passaglia CL
    Vis Neurosci; 2005; 22(4):493-500. PubMed ID: 16212706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light adaptation alters inner retinal inhibition to shape OFF retinal pathway signaling.
    Mazade RE; Eggers ED
    J Neurophysiol; 2016 Jun; 115(6):2761-78. PubMed ID: 26912599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response properties of ganglion cells in the isolated mouse retina.
    Stone C; Pinto LH
    Vis Neurosci; 1993; 10(1):31-9. PubMed ID: 8424927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha ganglion cells of the rabbit retina lose antagonistic surround responses under dark adaptation.
    Muller JF; Dacheux RF
    Vis Neurosci; 1997; 14(2):395-401. PubMed ID: 9147490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina.
    Crook JD; Davenport CM; Peterson BB; Packer OS; Detwiler PB; Dacey DM
    J Neurosci; 2009 Jul; 29(26):8372-87. PubMed ID: 19571128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells.
    Ströh S; Puller C; Swirski S; Hölzel MB; van der Linde LIS; Segelken J; Schultz K; Block C; Monyer H; Willecke K; Weiler R; Greschner M; Janssen-Bienhold U; Dedek K
    J Neurosci; 2018 Feb; 38(8):2015-2028. PubMed ID: 29352045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial summation and center-surround antagonism in the receptive field of single units in the dorsal lateral geniculate nucleus of cat: comparison with retinal input.
    Ruksenas O; Fjeld IT; Heggelund P
    Vis Neurosci; 2000; 17(6):855-70. PubMed ID: 11193102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear spatial integration in the receptive field surround of retinal ganglion cells.
    Takeshita D; Gollisch T
    J Neurosci; 2014 May; 34(22):7548-61. PubMed ID: 24872559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.